Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2019-09-19
Page range: 571–580
Abstract views: 98
PDF downloaded: 2

The mitochondrial genome of Leuctra sp. (Plecoptera: Leuctridae) and its performance in phylogenetic analyses

School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou 25009, China
Plecoptera Leuctridae mitochondrial genome Phylogeny

Abstract

The nearly complete mitochondrial genome (mitogenome) of Leuctra sp. (Plecoptera: Leuctridae) was sequenced. The 14,585-bp long mitogenome of L. sp. contained 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and a control region (CR). The mitochondrial gene arrangement of L. sp. was identical with other stoneflies and the putative ancestral mitogenome of Drosophila yakuba Burla. Most PCGs used standard ATN start codons and TAN termination codons. Twenty-one of the 22 tRNAs in each mitogenome exhibited the cloverleaf secondary structures, while the dihydrouridine (DHU) arm of trnSer (AGN) was reduced. Phylogenetic analyses using our new Leuctra sp. genome and all other publicly available genomes for Plecoptera and Bayesian inference (BI) and maximum likelihood methods (ML) generated identical topologies, both supporting the monophyly of all stonefly families for which tests were possible and the infraorder Systellognatha. Scopuridae and Gripopterygidae were grouped with the infraorder Euholognatha. The final relationships within Plecoptera were recovered as (((((Perlodidae + Chloroperlidae) + Perlidae) + Pteronarcyidae) + Peltoperlidae) + Styloperlidae) + (((((Capniidae + Taeniopterygidae) + Nemouridae) + Scopuridae) + Leuctridae) + Gripopterygidae).

 

References

  1. Cameron, S.L. (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 59, 95–117.

    https://doi.org/10.1146/annurev-ento-011613-162007

    Chen, Z.T. & Du, Y.Z. (2015) Comparison of the complete mitochondrial genome of the stonefly Sweltsa Longistyla (Plecoptera: Chloroperlidae) with mitogenomes of three other stoneflies. Gene, 558, 82–87.

    https://doi.org/10.1016/j.gene.2014.12.049

    Chen, Z.T., Wu, H.Y. & Du, Y.Z. (2016) The nearly complete mitochondrial genome of a stonefly species, Styloperla sp. (Plecoptera: Styloperlidae). Mitochondrial DNA, 27, 2728–2729.

    https://doi.org/10.3109/19401736.2015.1046166

    Chen, Z.T. & Du, Y.Z. (2017a) Complete mitochondrial genome of Capnia zijinshannai (Plecoptera: Capniidae) and phylogenetic analysis among stoneflies. Journal of Asia-Pacific Entomology, 20, 305–312.

    https://doi.org/10.1016/j.aspen.2017.01.013

    Chen, Z.T. & Du, Y.Z. (2017b) First mitochondrial genome from Nemouridae (Plecoptea) reveals novel features of the elongated control region and phylogenetic implications. International Journal of Molecular Sciences, 18, 996.

    https://doi.org/10.3390/ijms18050996

    Chen, Z.T., Zhao, M.Y., Xu, C. & Du, Y.Z. (2018) Molecular phylogeny of Systellognatha (Plecoptera: Arctoperlaria) inferred from mitochondrial genome sequences. International Journal of Biological Macromolecules, 111, 542–547.

    https://doi.org/10.1016/j.ijbiomac.2018.01.065

    Chen, Z.T. & Du, Y.Z. (2018) The first two mitochondrial genomes from Taeniopterygidae (Insecta: Plecoptera): Structral features and phylogenetic implications. International Journal of Biological Macromolecules, 111, 70–76.

    https://doi.org/10.1016/j.ijbiomac.2017.12.150

    Clary, D.O. & Wolstenholme, D.R. (1985b) The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution, 22, 252–271.

    https://doi.org/10.1007/BF02099755

    DeWalt, R.E., Maehr, M.D., Neu-Becker, U. & Stueber, G. (2019) Plecoptera Species File Online. Version 5.0/5.0. Available from: http://Plecoptera.SpeciesFile.org (accessed 13 August 2019)

    Elbrecht, V., Poettker, L., John, U. & Leese, F. (2015) The complete mitochondrial genome of the stonefly Dinocras cephalotes (Plecoptera, Perlidae). Mitochondrial DNA, 26, 469–470.

    https://doi.org/10.3109/19401736.2013.830301

    Garey, J.R. & Wolstenholme, D.R. (1989) Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNAserAGN that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. Journal of Molecular Evolution, 28, 374–387.

    https://doi.org/10.1007/BF02603072

    Huang, M., Wang, Y., Liu, X., Li, W., Kang, Z., Wang, K., Li, X. & Yang, D. (2015) The complete mitochondrial genome and its remarkable secondary structure for a stonefly Acroneurua hainana Wu (Insecta: Plecoptera, Perlidae) Gene, 557, 52–60.

    https://doi.org/10.1016/j.gene.2014.12.009

    Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.

    https://doi.org/10.1093/molbev/mst010

    Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: newmethods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772–773.

    https://doi.org/10.1093/molbev/msw260

    Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    https://doi.org/10.1093/bioinformatics/btg180

    Simon, C., Buckley, T.R., Frati, F., Stewart, J.B. & Beckenbach, A.T. (2006) Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review Ecology, Evolution,and Systematics, 37, 545–579.

    https://doi.org/10.1146/annurev.ecolsys.37.091305.110018

    Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics, 30, 1312–1313.

    https://doi.org/10.1093/bioinformatics/btu033

    Sproul, J.S., Houston, D.D., Nelson, C.R., Evans, R.P., Crandall, K.A. & Shiozawa, D.K. (2015) Climate oscillations, glacial refugia, and dispersal ability: factors influencing the genetic structure of the least salmonfly, Pteronarcella badia (Plecoptera), in Western North America, BMC. Evolution Biology, 15, 279.

    https://doi.org/10.1186/s12862-015-0553-4

    Terry, M.D. (2004) Phylogeny of the polyneopterous insects with emphasis on Plecoptera: Molecular and morphological evidence. Unpublished Ph.D dissertation. Brigham Young University, Provo, Utah, 118 pp.

    Vaidya, G., Lohman, D.J. & Meier, R. (2010) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27, 171–180.

    https://doi.org/10.1111/j.1096-0031.2010.00329.x

    Wu, H.Y., Ji, X.Y., Yu, W.W. & Du, Y.Z. (2014) Complete mitochondrial genome of the stonefly Cryptoperla stilifera Sivec (Plecoptera: Peltoperlidae) and the phylogeny of Polyneopteran insects. Gene, 537, 177–183.

    https://doi.org/10.1016/j.gene.2013.12.044

    Wang, K., Ding, S. & Yang, D. (2016a) The complete mitochondrial genome of a stonefly species, Kamimuria chungnanshana Wu, 1948 (Plecoptera: Perlidae). Mitochondrial DNA, 27, 3810–3811.

    https://doi.org/10.3109/19401736.2015.1082088

    Wang, K., Wang, Y. & Yang, D. (2016b) The complete mitochondrial genome of a stonefly species, Togoperla sp. (Plecoptera: Perlidae). Mitochondrial DNA, 27, 1703–1704.

    https://doi.org/10.3109/19401736.2015.1082088

    Wang, Y., Cao, J. & Li, W. (2017) The complete mitochondrial genome of the styloperlid stonefly species Styloperla (spiniccercia Wu (Insecta: Plecoptera) with family-level phylogenetic analyses of the Pteronarcyoidea. Zootaxa, 4243 (1), 125–138.

    https://doi.org/10.11646/zootaxa.4243.1.5

    Wang, Y., Cao, J.J., L, N., Ma, G.Y. & Li, W.H. (2019) The first mitochondrial genome from Scopuridae (Insecta: Plecoptera) reveals structural features and phylogenetic implications. International Journal of Biological Macromolecules, 122, 893–902.

    https://doi.org/10.1016/j.ijbiomac.2018.11.019

    Wei, S.J., Shi, M., Chen, X.X., Sharkey, M.J., Van Achterberg, C., Ye, G.Y. & He, J.H. (2010) New views on strand asymmetry in insect mitochondrial genomes. PLoS ONE, 5, e12708.

    https://doi.org/10.1371/journal.pone.0012708

    Wei, S.J. & Chen, X.X. (2011) Progress in research on the comparative mitogenomics of insects. Chinese Journal of Applied Entomology, 48, 1573–1585.

    Zhou, C.R., Tan, M.H., Du, S.Y., Zhang, R., Machida, R. & Zhou, X. (2016) The mitochondrial genome of the winter stonefly Apteroperla tikumana (Plecoptera, Capniidae). Mitochondrial DNA, 27, 3030–3032.

    https://doi.org/10.3109/19401736.2015.1063120

    Zwick, P. (1973) Insecta: Plecoptera Phylogenetisches System und Katalog. Tierreich, 94, 1–465.

    Zwick, P. (2000) Phylogenetic system and zoogeography of the Plecoptera. Annual Revew of Entomology, 45,709–746.

    https://doi.org/10.1146/annurev.ento.45.1.709