Abstract
The medically important spider genus Latrodectus Walckenaer 1805, commonly referred to as “button spiders” in South Africa, is represented by six species in the country. Using morphology and the COI barcoding gene we describe a new forest dwelling species, Latrodectus umbukwane n. sp. Wright, Wright, Lyle and Engelbrecht. Females have red markings on both the ventral and posterior dorsal surfaces of the abdomen, parallel spermathecae and three loops of the copulatory ducts. Males have an embolus with four loops and diagnostic white markings on the ventral surface of the abdomen that darken with age. Egg sacs are smooth, large, and bright purple when freshly laid, turning shiny grey with time. Latrodectus umbukwane n. sp. is known only from sand forest vegetation types in northern Zululand, KwaZulu-Natal, South Africa. A predicted geographic distribution for this species is provided based on cartographic mapping of known habitat and altitudinal preference, from which area of occupancy (AOO; 698 km2) and extent of occurrence (EOO; 4963 km2) were calculated to assess potential IUCN Red List status. Due to the uncertainty of the distribution of this species, a Red List status of Data Deficient (DD) is recommended. An updated key to the southern African species of Latrodectus is provided.
References
Abalos, J.W. (1980) Las arañas del género Latrodectus en la Argentina. Obra del Centenario del Museo de la Plata, 6, 29–51.
Aguilera, M.A., D’Elía, G. & Casanueva, M.E. (2009) Revalidacion de Latrodectus thoracicus Nicolet, 1849 (araneae: theridiidae): antecedentes biologicos y filogeneticos. Gayana, Concepción, 73 (2), 161–171.
https://doi.org/10.4067/S0717-65382009000200001
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.
https://doi.org/10.1016/S0022-2836(05)80360-2
Berendonck, B. & Greven, H. (2005) Genital structures in the entelegyne widow spider Latrodectus revivensis (Arachnida; Araneae; Theridiidae) indicate a low ability for cryptic female choice by sperm manipulation. Journal of Morphology, 263 (1), 118–132.
https://doi.org/10.1002/jmor.10296
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V. & Böhner, J. (2015) System for Automated Geoscientific Analyses (SAGA). Version 2.1.4. Geoscientific Model Development, 8, 1991–2007.
https://doi.org/10.5194/gmd-8-1991-2015
Dahl, F. (1902) Über abgebrochene Copulationsorgane männlicher Spinnen im Körper der Weibchen. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin, 1902, 36–45.
Dippenaar-Schoeman, A.S., Haddad, C.R., Foord, S.H., Lyle, R., Lotz, L.N. & Marais, P. (2015) South African National Survey of Arachnida (SANSA): review of current knowledge, constraints and future needs for documenting spider diversity (Arachnida: Araneae), Transactions of the Royal Society of South Africa, 70 (3), 245–275.
https://doi.org/10.1080/0035919X.2015.1088486
Dowton, M., Meiklejohn, K., Cameron, S.L. & Wallman, J. (2014) A preliminary framework for DNA barcoding, incorporating the multispecies coalescent. Systematic Biology, 63 (4), 639–644.
https://doi.org/10.1093/sysbio/syu028
Dupois, J.R., Roe, A.D. & Sperling, F.A. (2012) Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Molecular Ecology, 21 (18), 4422–4436.
https://doi.org/10.1111/j.1365-294X.2012.05642.x
Fernández, R., Kallal, R.J., Dimitrov, D., Ballesteros, J.A., Arnedo, M.A., Giribet, G. & Hormiga, G. (2018) Phylogenomics, diversification dynamics and comparative transcriptomics across the Spider Tree of Life. Current Biology, 28, 1489–1497.
https://doi.org/10.1016/j.cub.2018.03.064
Fick, S.E. & Hijmans, R.J. (2017) Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 31 (12), 4302–4315.
https://doi.org/10.1002/joc.5086
Folmer, O., Black, M., Hoeth, W., Lutz, R. & Vrijenhoek, R. (1990) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.
Garb, J.E., González, A. & Gillespie, R.G. (2004) The black widow spider genus Latrodectus (Araneae: Theridiidae): phylogeny, biogeography, and invasion history. Molecular Phylogenetics and Evolution, 31 (3), 1127–1142.
https://doi.org/10.1016/j.ympev.2003.10.012
Goyal, V. & Malik, V. (2017) The first record of the redback spider Latrodectus hasselti Thorell (Araneae: Theridiidae) from Haryana, north India. Journal of Environment and Bio-Sciences, 31 (2), 441–442.
IUCN (2012) IUCN Red List Categories and Criteria: Version 3.1. 2nd Edition. IUCN, Gland & Cambridge, 32 pp.
Kananbala, A., Manoj, K., Bhubaneshwari, M., Binarani, A. & Siliwal, M. (2012) The first report of the widow spider Latrodectus elegans (Araneae: Theridiidae) from India. Journal of Threatened Taxa, 4 (7), 2718–2722.
https://doi.org/10.11609/JoTT.o3152.2718-22
Kaston, B.J. (1970) Comparative biology of American black widow spiders. Transactions of San Diego Society of Natural History, 16, 33–82.
Knoflach, B. & van Harten, A. (2002) The genus Latrodectus (Araneae: Theridiidae) from mainland Yemen, the Socotra Archipelago and adjacent countries. Fauna of Arabia, 19, 321–362. Available from: https://wsc.nmbe.ch/reference/9337 (accessed 21 March 2019)
Knutson, V. & Miller, J.A. (2007) Taxonomic Status of the widow spider genus Latrodectus based on molecular analysis. Society for Integrative and Comparative Biology Annual Meeting, 2007. [conference poster]
Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA 7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. https://doi.org/10.1093/molbev/msw054
Levi, H.W. (1959) The spider genus Latrodectus (Araneae, Theridiidae). Transactions of the American Microscopical Society, 78 (1), 7–43.
https://doi.org/10.2307/3223799
Levy, G. (1998) Araneae: Theridiidae. Fauna Palaestina, Arachnida III. Israel Academy of Sciences and Humanities, Jerusalem, 228 pp. Available from: https://wsc.nmbe.ch/reference/8599 (accessed 11 March 2019)
Lotz, L.N. (1994) Revision of the genus Latrodectus (Araneae: Theridiidae) in Africa. Navorsinge van die Nasionale Museum : Researches of the National Museum, 10 (1), 27–56. Available from: https://wsc.nmbe.ch/reference/7753 (accessed 11 March 2019)
Liu, J., Jiang, J., Song, S., Tornabene, L., Chabarria, R., Naylor, G.J. & Li, C. (2017) Multilocus DNA barcoding–Species Identification with Multilocus Data. Scientific Reports, 7 (1), 16601.
https://doi.org/10.1038/s41598-017-16920-2
Maretic, Z. (1983) Latrodectism variations in clinical manifestations provoked by Latrodectus spiders. Toxicon, 21, 457–466.
https://doi.org/10.1016/0041-0101(83)90123-X
Matthews, W.S. (2005) Contributions to the ecology of Maputaland, southern Africa, with emphasis on Sand Forest. Doctoral dissertation, University of Pretoria, Pretoria. Available from: https://repository.up.ac.za/handle/2263/25331 (accessed 11 March 2017)
McCrone, J.D. & Levi, H.W. (1964) North American widow spiders of the Latrodectus curacaviensis group (Araneae, Theridiidae). Psyche, 71 (1), 12–27.
https://doi.org/10.1155/1964/86469
Melic, A. (2000) El género Latrodectus Walckenaer, 1805 en la península Ibérica (Araneae: Theridiidae). Revista Ibérica de Aracnología, 1, 13–30. Availabe from: http://sea-entomologia.org/PDF/RIA_1/R01-002-013.pdf (accessed 11 March 2017)
Mirshamsi, O. (2005) New records of three Latrodectus species found in Khorasan province (Araneae: Theridiidae). Iranian Journal of Animal Biosystematics, 1, 52–58.
Mucina, L. & Geldenhuys, C.J. (2006) Afrotemperate, Subtropical, and Azonal Forests. In: Mucina, L. & Rutherford, M.C., (Eds.), The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria, pp. 605–606.
Muller, G.J. (1993) Black and brown widow spider bites in South Africa—a series of 45 cases. South African Medical Journal, 83, 399–405.
Nel, R., Mearns, K.F. & Jordaan, M. (2017) Modelling informal Sand Forest harvesting using a Disturbance Index from Landsat, in Maputaland (South Africa). Ecological Informatics, 39, 1–9.
https://doi.org/10.1016/j.ecoinf.2017.02.005
Posada, D. (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25 (7), 1253–1256.
https://doi.org/10.1093/molbev/msn083
QGIS Development Team (2019) QGIS Geographic Information System. Open Source Geospatial Foundation Project. Availabe from: http://qgis.osgeo.org (accessed 11 March 2017)
Ratnasingham, S. & Hebert, P.D.N. (2007) BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes, 7, 355–364.
https://doi.org/10.1111/j.1471-8286.2007.01678.x
Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19 (12), 1572–1574.
https://doi.org/10.1093/bioinformatics/btg180
Saaristo, M.I. (2010) Araneae. In: Gerlach, J. & Marusik, Y. (Eds.), Arachnida and Myriapoda of the Seychelles islands. Siri Scientific Press, Manchester, pp. 8–306. Availabe from: https://wsc.nmbe.ch/reference/11634 (accessed 21 March 2018)
Schmidt, G., Geisthardt, M. & Piepho, F. (1994) Zur Kenntnis der Spinnenfauna der Kapverdischen Inseln (Arachnida: Araneida). Mitteilungen des Internationalen Entomologischen Vereins, 19, 81–126. Availabe from: https://wsc.nmbe.ch/reference/7808 (accessed 11 March 2017)
Stamatakis, A., Blagojevic, F., Nikolopoulos, D.S. & Antonopoulos, C.D. (2007) Exploring new search algorithms and hardware for phylogenetics: RAxML meets the IBM cell. The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 48 (3), 271–286.
https://doi.org/10.1007/s11265-007-0067-4
Stamatakis, A. (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 30, 1312–1313. Available from: http://sco.h-its.org/exelixis/web/software/raxml/ (accessed 21 March 2019)
Tavaré, S. & Miura, R.M. (1986) Some probabilistic and statistical problems in the analysis of DNA sequences, Lectures on Mathematics in the Life Sciences, 17 (2), 57–86.
Van Proosdij, A.S., Sosef, M.S., Wieringa, J.J. & Raes, N. (2016) Minimum required number of specimen records to develop accurate species distribution models. Ecography, 39 (6), 542–552.
https://doi.org/10.1111/ecog.01509
Vink, C.J., Sirvid, P.J., Malumbres-Olarte, J., Griffiths, J.W., Paquin, P. & Paterson, A.M. (2008) Species status and conservation issues of New Zealand’s endemic Latrodectus spider species (Araneae: Theridiidae). Invertebrate Systematics, 22 (6), 589–604.
https://doi.org/10.1071/IS08027
Will, K.W., Mishler, B.D. & Wheeler, Q.D. (2005) The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54 (5), 844–851.
https://doi.org/10.1080/10635150500354878
World Spider Catalog (2018) World Spider Catalog. Natural History Museum Bern, Bern. Available from: http://wsc.nmbe.ch (accessed 9 May 2018)
Yang, Z. & Rannala, B. (2017) Bayesian species identification under the multispecies coalescent provides significant improvements to DNA barcoding analyses. Molecular Ecology, 26 (11), 3028–3036.
https://doi.org/10.1111/mec.14093