Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2020-07-01
Page range: 79–100
Abstract views: 134
PDF downloaded: 1

A new genus Turneroconcha (Bivalvia: Vesicomyidae: Pliocardiinae) for the giant hydrothermal vent clam ‘Calyptogenamagnifica

Shirshov Institute of Oceanology, Russian Academy of Sciences, Nahimovskiy Prospekt, 36, Moscow, 117997, Russia
MARUM—Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Klagenfurter Str. 2-4, 28359, Bremen, Germany
Mollusca chemosymbiotic bivalves deep-sea bathyal morphology anatomy systematics new combination

Abstract

A new monotypic genus, Turneroconcha, is established for T. magnifica (Boss & Turner) which was originally assigned to the genus Calyptogena Dall. The distinguishing morphological characters of the new genus are the combination of both conchological and anatomical features including: the presence of only two tooth elements in the right valve; submerged location of the posterior part of the posterior lamellar ligament layer; the absence of a subumbonal pit, lunular incision, escutcheon and pallial sinus; the presence of both pairs of demibranchs; the tubular structure of marginal parts of the interlamellar septa in gills; an inner valve of the inhalant siphon without processes; tentaculate inner mantle fold 3 and a Z-shaped digestive tract. Analysis of morphological data on Recent and fossil pliocardiines shows that Turneroconcha gen. nov. can be presently considered as a monotypic genus. The comparative morphological analysis of the new genus with described pliocardiine genera is consistent with available molecular results. Turneroconcha gen. nov. is endemic to the East-Pacific Rise and Galapagos Rift and occurs at water depths of 2251 to 2791 m. It is the only pliocardiine genus known so far with a mainly epifaunal life habit. No fossils of Turneroconcha gen. nov. are known.

 

References

  1. Amano, K. & Kiel, S. (2007) Fossil vesicomyid bivalves from the North Pacific region. The Veliger, 49, 270–293.

    Amano, K. & Kiel, S. (2011) Fossil Adulomya (Vesicomyidae, Bivalvia) from Japan. The Veliger, 51, 76–90.

    Amano, K., Jenkins, R.G., Ohara, M. & Kiel, S. (2014a) Miocene vesicomyid species (Bivalvia) from Wakayama in southern Honshu, Japan. The Nautilus, 128, 9–17.

    Amano, K., Saether, K.P., Little, C.T.S. & Campbell, K.A. (2014b) Fossil vesicomyid bivalves from Miocene hydrocarbon seep sites, North Island, New Zealand. Acta Palaeontologica Polonica, 59, 421–428.

    https://doi.org/10.4202/app.2012.0070

    Arp, A.J., Childress, J.J. & Fisher, C. R (1984) Metabolic and blood gas transport characteristics of the hydrothermal vent bivalve Calyptogena magnifica. Physiological Zoology, 57, 648–662.

    https://doi.org/10.1086/physzool.57.6.30155991

    Audzijonyte, A., Krylova, E.M., Sahling, H. & Vrijenhoek, R.C. (2012) Molecular taxonomy reveals broad trans-oceanic distributions and high species diversity of deep-sea clams (Bivalvia: Vesicomyidae: Pliocardiinae) in chemosynthetic environments. Systematics and Biodiversity, 10, 403–415.

    https://doi.org/10.1080/14772000.2012.744112

    Berg, Jr. C.J. (1985) Reproductive strategies of mollusks from abyssal hydrothermal vent communities. Bulletin of the Biological Society of Washington, 6, 185–197.

    Boss, K.J. (1968) New species of Vesicomyidae from the Gulf of Darien, Caribbean Sea (Bivalvia; Mollusca). Bulletin of Marine Science, 18, 731–748.

    Boss, K.J. & Turner, R.D. (1980) The giant white clam from the Galapagos Rift, Calyptogena magnifica species novum. Malacologia, 20, 161–194.

    Cavanaugh, C. (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature, 302, 58–61.

    https://doi.org/10.1038/302058a0

    Childress, J.J., Fisher, C.R., Favuzzi, J.A. & Sanders, N.K. (1991) Sulfide and carbon dioxide uptake by the hydrothermal vent clam, Calyptogena magnifica, and its chemoautotrophic symbionts. Physiological Zoology, 64, 1444–1470.

    https://doi.org/10.1086/physzool.64.6.30158224

    Childress, J.J. & Fisher, C.R. (1992) The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbioses. Oceanography and marine Biology: An annual review, 30, 337–441.

    Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., Herzen, R.P.V., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K. & Andel, T.H.V. (1979) Submarine thermal springs on the Galápagos Rift. Science, 203, 1073–1083. https://doi.org/10.1126/science.203.4385.1073

    Cosel, R. von & Olu, K. (2008) A new genus and new species of Vesicomyidae (Mollusca, Bivalvia) from cold seeps on the Barbados accretionary prism, with comments on other species. Zoosystema, 30, 929–944.

    Cosel, R. von & Olu, K. (2009) Large Vesicomyidae (Mollusca: Bivalvia) from cold seeps in the Gulf of Guinea off the coasts of Gabon, Congo and northern Angola. Deep-Sea Research II, 56, 2350–2379.

    https://doi.org/10.1016/j.dsr2.2009.04.016

    Cosel, R. von & Salas, C. (2001) Vesicomyidae (Mollusca: Bivalvia) of the genera Vesicomya, Waisiuconcha, Isorropodon and Callogonia in the eastern Atlantic and the Mediterranean. Sarsia, 86, 333–366.

    https://doi.org/10.1080/00364827.2001.10425523

    Dall, W.H. (1891) On some new or interesting West American shells obtained from the dredgings of the U.S. Fish Commission steamer ‘Albatross’ in 1888, and from other sources. Proceedings of the United States National Museum, 14, 173–191.

    https://doi.org/10.5479/si.00963801.14-849.173

    Dall, W.H. (1895) Scientific results of explorations by the U.S. Fish Commission steamer ‘Albatross’. N XXXIV. Report on Mollusca and Brachiopoda dredged in deep water, chiefly near the Hawaiian Islands, with illustrations of hitherto unfigured species from northwest America. Proceedings of the United States National Museum, 17, 675–733.

    https://doi.org/10.5479/si.00963801.17-1032.675

    Dall, W.H. (1916) Diagnoses of new species of marine bivalve mollusks from the Northwest coast of America in the collection of the United States National Museum. Proceedings of the United States National Museum, 52, 393–417.

    https://doi.org/10.5479/si.00963801.52-2183.393

    Dall, W.H. & Simpson, C.T. (1901) The Mollusca of Porto Rico. U.S. Fisheries Commission Bulletin, 20, 351–524.

    Decker, C., Olu, K., Cunha, R.L. & Arnaud-Haond, S. (2012) Phylogeny and diversification patterns among vesicomyid bivalves. PLoS One, 7, e33359.

    https://doi.org/10.1371/journal.pone.0033359

    Decker, C., Zorn, N., Potier, N., Leize-Wagner, E., Lallier, F.H., Olu, K. & Andersen, A.C. (2014) Globin’s structure and function in vesicomyid bivalves from the Gulf of Guinea cold seeps as an adaptation to life in reduced sediments. Physiological and Biochemical Zoology, 87, 855–869.

    https://doi.org/10.1086/678131

    Drozdov, A.L., Krylova, E.M., Kudryavtsev, A.A., Galkin, S.V., Tyurin, S.A. (2019) The sperm ultrastructure and some reproductive characteristics of the chemosymbiotic bivalve Calyptogena pacifica Dall, 1891 (Vesicomyidae: Pliocardiinae). Russian Journal of Marine Biology, 45, 292–301.

    https://doi.org/10.1134/S1063074019040047

    Fatton, E. & Roux, M. (1981) Etapes de l’organisation microstructurale chez Calyptogena magnifica Boss et Turner, bivalve a croissance rapide des sources hydrothermales oceaniques. Comptes Rendus de l’Académie des Sciences, 293, 63–68.

    Felbeck, H., Childress, J.J. & Somero, G.N. (1981) Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature, 293, 291–293.

    https://doi.org/10.1038/293291a0

    Fiala-Médioni, A. & Felbeck, H. (1990) Autotrophic processes in invertebrate nutrition: bacterial symbiosis in bivalve molluscs. In: Mellinger, J. (Ed.), Comparative Physiology. Karger, Basel, pp. 49–69.

    Fiala-Médioni, A. & Métivier, C. (1986) Ultrastructure of the gill of the hydrothermal vent bivalve Calyptogena magnifica, with a discussion of its nutrition. Marine Biology, 90, 215–222.

    https://doi.org/10.1007/bf00569130

    Fisher, C.R., Childress, J.J., Arp, A.J., Brooks, J.M., Distel, D., Favuzzi, J.A., Macko, S.A., Newton, A., Powell, M.A., Somero, G.N. & Soto, T. (1988) Variation in the hydrothermal vent clam, Calyptogena magnifica, at the Rose Garden vent on the Galapagos spreading center. Deep Sea Research, 35, 1811–1831.

    https://doi.org/10.1016/0198-0149(88)90051-9

    Fisher, C.R., Childress, J.J., Macko, S.A. & Brooks, J.M. (1994) Nutritional interactions in Galapagos Rift hydrothermal vent communities: inference from stable carbon and nitrogen isotope analyses. Marine Ecology Progress Series, 103, 45–55.

    https://doi.org/10.3354/meps103045

    Galkin, S.V. (2005) Spatial structure of the hydrothermal communities on the East Pacific Rise (according to the materials obtained during cruise 49 of R/V Akademik Mstislav Keldysh). Oceanology, 45, 832–840.

    Hessler, R.R., Smithey, W.M., Boudrias, M.A., Keller, C.H., Lutz, R.A. & Childress, J.J. (1988) Temporal change in megafauna at the Rose Garden hydrothermal vent (Galapagos Rift; eastern tropical Pacific). Deep Sea Research, 35, 1681–1709.

    https://doi.org/10.1016/0198-0149(88)90044-1

    Hurtado, L.A., Mateos, M., Lutz, R.A. & Vrijenhoek, R.C. (2003) Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica. Applied and Environmental Microbiology, 69, 2058–2064.

    https://doi.org/10.1128/aem.69.4.2058-2064.2003

    Johnson, S.B., Krylova, E.M., Audzijonyte, A., Sahling, H. & Vrijenhoek, R.C. (2017) Phylogeny and origins of chemosynthetic vesicomyid clams. Systematics and Biodiversity, 15, 346–360.

    https://doi.org/10.1080/14772000.2016.1252438

    Kanno, S., Tanaka, K., Koike, H., Narita, K. & Endo, T. (1998) Aduomya uchimuraensis Kuroda (Bivalvia) from the Miocene Bessho Formation in Shiga-mura, Nagano Prefecture, Japan. Research Report of the Shinshushinmachi Fossil Museum, 1, 17–28.

    Karl, S.A., Schutz, S.J., Desbruyères, D., Lutz, R.A. & Vrijenhoek, R.C. (1996) Molecular analysis of gene flow in the hydrothermal-vent clam Calyptogena magnifica. Molecular Marine Biology and Biotechnology, 5, 193–202.

    Kennish, M.J. & Lutz, R.A. (1992) The hydrothermal vent clam, Calyptogena magnifica (Boss and Turner, 1980): A review of existing literature. Reviews in Aquatic Sciences, 6, 29–66.

    Kojima, S., Fujikura, K. & Okutani, T. (2004) Multiple trans-Pacific migrations of deep-sea vent/seep-endemic bivalves in the family Vesicomyidae. Molecular Phylogenetics and Evolution, 32, 396–406.

    https://doi.org/10.1016/j.ympev.2004.02.016

    Krylova, E.M. & Cosel, R. von (2011) A new genus of large Vesicomyidae (Mollusca, Bivalvia, Vesicomyidae, Pliocardiinae) from the Congo margin, with the first record of the subfamily Pliocardiinae in the Bay of Biscay (northeastern Atlantic). Zoosystema, 33, 83–99.

    https://doi.org/10.5252/z2011n1a4

    Krylova, E.M. & Janssen, R. (2006) Vesicomyidae from Edison Seamount (South Western Pacific: Papua New Guinea: New Ireland fore-arc basin) (Bivalvia: Glossoidea). Archiv für Molluskenkunde, 135, 233–263.

    https://doi.org/10.1127/arch.moll/1869-0963/141/087-113

    Krylova, E.M. & Sahling, H. (2006) Recent bivalve molluscs of the genus Calyptogena (Vesicomyidae). Journal of Molluscan Studies, 72, 359–395.

    https://doi.org/10.1093/mollus/eyl022

    Krylova, E.M. & Sahling, H. (2010) Vesicomyidae (Bivalvia): Current Taxonomy and Distribution. PLoS ONE, 5, e9957.

    https://doi.org/10.1371/journal.pone.0009957

    Krylova, E.M., Sahling, H. & Janssen, R. (2010) Abyssogena: a new genus of the family Vesicomyidae (Bivalvia) from deep water vents and seeps. Journal of Molluscan Studies, 76, 107–132.

    https://doi.org/10.1093/mollus/eyp052

    Krylova, E.M., Sellanes, J., Valdés, F. & D’Elía, G. (2014) Austrogena: a new genus of chemosymbiotic bivalves (Bivalvia; Vesicomyidae; Pliocardiinae) from the oxygen minimum zone off central Chile described through morphological and molecular analyses. Systematics and Biodiversity, 12 (2), 225–246.

    https://doi.org/10.1080/14772000.2014.900133

    Kuroda, T. (1931) Fossil Mollusca. In: Homma, F. (Ed.), Geology of the central part of Shinano. Part 4. Kokin Shoin, Tokyo, pp. 1–90. [in Japanese]

    Kuroda, T. (1943) Akebiconcha, a new pelecypod genus. Venus, 13, 14–18.

    Le Pennec, M., Beninger, P.G. & Herry, A. (1995) Feeding and digestive adaptations of bivalve molluscs to sulphide-rich habitats. Comparative Biochemistry and Physiology, 111A, 183–189.

    https://doi.org/10.1016/0300-9629(94)00211-b

    Le Pennec, M., Donval, A. & Herry, A. (1990) Nutritional strategies of the hydrothermal ecosystem bivalves. Progress in Oceanography, 24, 71–80.

    https://doi.org/10.1016/0079-6611(90)90020-3

    Liu, H., Cai, S., Zhang, H. & Vrijenhoek, R.C. (2016) Complete mitochondrial genome of hydrothermal vent clam Calyptogena magnifica. Mitochondrial DNA Part A, 27, 4333–4335.

    https://doi.org/10.3109/19401736.2015.1089488

    Liu, J. & Zhang, H. (2018) DNA barcoding for species identification in deep-sea clams (Mollusca: Bivalvia: Vesicomyidae). Mitochondrial DNA Part A, 29 (8), 1165-1173.

    https://doi.org/10.1080/24701394.2018.1424843

    Lutz, R.A., Fritz, L.W. & Cerrato, R.M. (1988) A comparison of bivalve (Calyptogena magnifica) growth at two deep-sea hydrothermal vents in the eastern Pacific. Deep Sea Research Part A. Oceanographic Research Papers, 35, 1793–1810.

    https://doi.org/10.1016/0198-0149(88)90050-7

    Morton, B. (1986) The functional morphology of the organs of feeding and digestion of the hydrothermal vent bivalve Calyptogena magnifica (Vesicomyidae). The Journal of Zoology (A), 208, 83–98.

    https://doi.org/10.1111/j.1469-7998.1986.tb04711.x

    Newton, I.L.G., Woyke, T., Auchtung, T.A., Dilly, G.F., Dutton, R.J., Fisher, M.C., Fontanez, K.M., Lau, E., Stewart, F.J., Richardson, P.M., Barry, K.W., Saunders, E., Detter, J.C., Wu, D., Eisen, J.A. & Cavanaugh, C.M. (2007) The Calyptogena magnifica chemoautotrophic symbiont genome. Science, 315, 998–1000.

    https://doi.org/10.1126/science.1138438

    Nobuhara, T. (2003) Cold seep carbonate mounds with Vesicomya (Calyptogena) kawamurai (Bivalvia: Vesicomyidae) in slope-mud facies of the Pliocene forearc basin of the Sagara-Kakegawa area, central Japan. Paleontological Research, 7, 313–328.

    https://doi.org/10.2517/prpsj.7.313

    Okutani, T., Hashimoto, J. & Fujikura, K. (1992) A new species of vesicomyid bivalve associated with hydrothermal vents near Amami-Oshima Island, Japan. Venus, 51, 225–233.

    Okutani, T., Kojima, S. & Kim D. (2004) A new Calyptogena Clam (Bivalvia: Vesicomyidae) from the Southwest Pacific. Venus, 63, 29–32.

    Ozawa, G., Shimamura, S., Takaki, Y., Takishita, K., Ikuta, T., Barry, J.P., Maruyama, T., Fujikura, K. & Yoshida, T. (2017) Ancient occasional host switching of maternally transmitted bacterial symbionts of chemosynthetic vesicomyid clams. Genome Biology and Evolution, 9, 2226–2236.

    https://doi.org/10.1093/gbe/evx166

    Parra, M., Sellanes, J., Dupré, E. & Krylova, E. (2009) Reproductive characteristics of Calyptogena gallardoi Sellanes & Krylova, 2005 (Bivalvia: Vesicomyidae) from a methane seep area off Concepción, Chile. Journal of Marine Biological Association of the United Kingdom, 89, 161–169.

    https://doi.org/10.1017/s0025315408002397

    Peek, A.S., Gustafson, R.G., Lutz, R.A. & Vrijenhoek, R.C. (1997) Evolutionary relationships of deep-sea hydrothermal vent and cold-water seep clams (Bivalvia: Vesicomyidae): results from mitochondrial cytochrome oxidase subunit I. Marine Biology, 130, 151–161.

    https://doi.org/10.1007/s002270050234

    Peek, A.S., Gaut, B.S., Feldman, R.A., Barry, J.P., Kochevar, R.E., Lutz, R.A. & Vrijenhoek, R.C. (2000) Neutral and nonneutral mitochondrial genetic variation in deep-sea clams from the family Vesicomyidae. Journal of Molecular Evolution, 50, 141–153.

    https://doi.org/10.1007/s002399910016

    Rau, G.H. (1981) Hydrothermal vent clam and tube worm C13/C12: further evidence of non- photosynthetic food sources. Science, 213 (4505), 338–339.

    https://doi.org/10.1126/science.213.4505.338

    Roeselers, G., Newton, I., Woyke, T., Auchtung, T.A., Dilly, G.F., Dutton, R. J., Fisher, M.C., Fontanez, K.M., Lau, E., Stewart, F.J., Richardson, P.M., Barry, K.W., Saunders, E., Detter, J.C., Wu, D., Eisen, J.A. & Cavanaugh, C.M. (2010) Complete genome sequence of Candidatus Ruthia magnifica. Standards in Genomic Sciences, 3, 163–173.

    https://doi.org/10.4056/sigs.1103048

    Roesijadi, G., Young, J.S., Crecelius, E.A. & Thomas, L.E. (1985) Distribution of trace metals in the hydrothermal vent clam, Calyptogena magnifica. Bulletin of the Biological Society of Washington, 6, 311–324.

    Sellanes, J., Krylova, E. (2005) A new species of Calyptogena (BIVALVIA, Vesicomyidae) from a recently discovered methane seepage area off Concepción Bay, Chile (~36ºS). 2005, Journal of Marine Biological Association of the United Kingdom, 85, 969–976.

    https://doi.org/10.1017/s0025315405011963

    Somero, G.N., Childress, J.J. & Anderson, A.E. (1989) Transport, metabolism, and detoxification of hydrogen sulfide in animals from sulfide-rich marine environments. Critical Reviews in Aquatic Sciences, 1, 591–614.

    Suzuki, T., Takagi, T. & Ohta, S. (1989) Primary structure of a dimeric haemoglobin from the deep-sea cold-seep clam Calyptogena soyoae. Biochemical Journal, 260, 177–182.

    https://doi.org/10.1042/bj2600177

    Takeda, H. (1953) The Poronai Formation (Oligocene Tertiary) of Hokkaido and South Sakhalin and its fossil fauna. Studies on Coal Geology, N 3. Geological Section. Association of Coal Mining Technologists, Sapporo, Hokkaido, 85 pp.

    Terwilliger, R.C., Terwilliger, N.B. & Arp, A. (1983) Thermal vent clam (Calyptogena magnifica) hemoglobin. Science, 219, 981–983.

    https://doi.org/10.1126/science.219.4587.981

    Tunnicliffe, V. (1991) The biology of hydrothermal vents: ecology and evolution. Oceanography and Marine Biology: An Annual Review, 29, 319–407.

    Turekian, K.K. & Cochran, J.K. (1981) Growth rate of a vesicomyid clam from the Galapagos spreading center. Science, 214, 909–911.

    https://doi.org/10.1126/science.214.4523.909

    Valdés, F., Sellanes, J. & D’Elía, G. (2012) Phylogenetic position of vesicomyid clams from a methane seep off central Chile (~36º S) with a molecular timescale for the diversification of Vesicomyidae. Zoological Studies, 51, 1154–1164.

    Van Winkle, K. (1919) Remarks on some new species from Trinidad. Bulletins of American Paleontology, 8, 19–27.

    Vrijenhoek, R.C., Schutz, S.J., Gustafson, R.G. & Lutz, R.A. (1994) Cryptic species of deep-sea clams (Mollusca: Bivalvia: Vesicomyidae) from hydrothermal vent and cold-water seep environments. Deep-Sea Research, 41, 1171–1189.

    https://doi.org/10.1016/0967-0637(94)90039-6

    Waller, T.R. (1980) Scanning electron microscopy of shell and mantle in the order Arcoida (Mollusca: Bivalvia). Smithsonian Contributions to Zoology, 313, 1–58.

    https://doi.org/10.5479/si.00810282.313

    Woodring, W.P. (1925) Miocene mollusks from Bowden, Jamaica. Pelecypods and scaphopods. Carnegie Institution of Washington Publication, 366, 1–222.

    https://doi.org/10.5962/bhl.title.29194

    Woodring, W.P. (1938) Lower Pliocene mollusks and echinoids from the Los Angeles Basin, California. United States Geological Survey Professional Paper, 190, 1–67.

    https://doi.org/10.3133/pp190

    Zal, F., Leize, E., Oros, D.R., Hourdez, S., Van Dorsselaer, A. & Childress, J.J. (2000) Haemoglobin structure and biochemical characteristics of the sulphide-binding component from the deep-sea clam Calyptogena magnifica. Cahiers de Biologie Marine, 41, 413–423.