Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2020-09-28
Page range: 160–195
Abstract views: 162
PDF downloaded: 6

Life stages and phylogenetic position of the wool carder bee mite Sennertionyx manicati (Acari: Acaridae)

Plant Health & Environment Laboratory, Ministry for Primary Industries, New Zealand
Plant Health & Environment Laboratory, Ministry for Primary Industries, New Zealand
Plant Health & Environment Laboratory, Ministry for Primary Industries, New Zealand
Acari Astigmata Acaroidea life cycle ontogeny phylogeny

Abstract

In mites of the family Acaridae, usually two developmental stages, adult (males, females) and deutonymphal stage (=hypopus) are used for diagnostic descriptions. Because these taxonomically important stages live in different habitats (i.e. deutonymphs are phoretic on a hymenopteran host, while adults live inside the nest of the host), one of these can be missing or they cannot be confidently corelated with each other. Sennertionyx manicati (Acari: Acaridae) was only known from hypopus. Herein, we describe all post-embryonic stages of S. manicati based on material obtained from a nest of Anthidium manicatum in Auckland, New Zealand, and provide a key to all life stages of this species. We also conducted a phylogenetic analysis of the 18S gene and the D2/D3 region of 28S genes from field-collected specimens and GenBank data. The molecular analysis indicated the New Zealand specimen shared the identical 18S and 99.5% identity of the D2D3 region of 28S sequences with S. manicati from Italy, and clustered together in the phylogenetic trees.

 

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    https://doi.org/10.1016/s0022-2836(05)80360-2

    Fain, A. (1984) Notes sur les hypopes du genre Horstia Oudemans, 1905 (Acari, Acaridae), phorétiques sur les Hyménoptères. Acarologia, 25, 259–270.

    Fain, A. & Baugnée, J.-Y. (1996) Acariens phorétiques ou parasites récoltes sur des insectes du sud de la Belgique. Deuxième note. Bulletin et Annales de la Societé Royale Belge d’Entomologie, 132, 19–33.

    Fain, A. & Chmielewski, W. (1987) Horstia (Horstia) longa spec. novo (Acari, Acaridae) from house-dust in Poland. Bulletin Entomologique De Pologne, 57, 367–372.

    Fain, A. & Heard, T.A. (1987) Description and life cycle of Cerophagus trigona spec. nov. (Acari, Acaridae), associated with the stingless bee Trigona carbonaria Smith in Australia. Bulletin de l’Institut royal des Sciences naturelles de Belgique, Entomologie. 57, 197–202.

    Fan, Q.-H. & Zhang, Z.-Q. (2007) Tyrophagus (Acari: Astigmata: Acaridae). Fauna of New Zealand 56. Manaaki Whenua Press, Lincoln, 291 pp.

    https://doi.org/10.7931/J2/FNZ.56

    Giard, A. (1900) Sur un nouveau Tyroglyphide (Trichotarsus manicati, n. sp.) [Acar.] parasite d’Anthidium manicatum L., et sur le genre Trichotarsus. Bulletin de la Société Entomologique de France, 5, 375–377.

    Grandjean, F. (1939) La chaetotaxie des pattes chez les Acaridae. Bulletin de la Société Zoologique de France, 64, 50–60.

    Griffiths, D.A. (1970) A further systematic study of the genus Acarus L., 1758 (Acaridae, Acarina), with a key to species. Bulletin of the British Museum (Natural History) Zoology, 19 (2), 85–118.

    Griffiths, D.A., Atyeo, W.T., Norton, R.A. & Lynch, C.A. (1990) The idiosomal chaetotaxy of astigmatid mites. Journal of Zoology, 220, 1–32.

    https://doi.org/10.1111/j.1469-7998.1990.tb04291.x

    Guindon, S, & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.

    https://doi.org/10.1080/10635150390235520

    Heitmans, W.R.B. (2013) Taxonomische identiteit van Nederland met vermelding van de vindplaatsen. Entomologische Berichten, 73, 226–236.

    Holterman, M., Van Der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovacgov, O., Bakker, J. & Helder, J. (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution, 13, 1792–1800.

    https://doi.org/10.1093/molbev/msl044

    Huelsenbeck, J.P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics, 17, 754.

    https://doi.org/10.1093/bioinformatics/17.8.754

    Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28 (12), 1647 –1649.

    https://doi.org/10.1093/bioinformatics/bts199

    Klimov, P.B. & O’Connor, B.M. (2008) Origin and higher-level relationships of psoroptidian mites (Acari: Astigmata: Psoroptidia): Evidence from three nuclear genes. Molecular Phylogenetics and Evolution, 47, 1135–1156.

    https://doi.org/10.1016/j.ympev.2007.12.025

    Klimov, P.B. & O’Connor, B. (2013) Is Permanent Parasitism Reversible?—Critical Evidence from Early Evolution of House Dust Mites, Systematic Biology, 62 (3), 411–423.

    https://doi.org/10.1093/sysbio/syt008

    Klimov, P.B. & Tolstikov, A.V. (2011) Acaroid mites of northern and eastern Asia (Acari: acaroidea). Acarina, 19, 252–264.

    Nazari, S., Monfared, A., Nemati, A. & Azhari, S. (2019) A survey on bees (Insecta, Hymenoptera, Apoidea) and their associated mites in Chaharmahal and Bakhtiari province of Iran. Journal of Insect Biodiversity and Systematics, 5 (2), 107–120.

    Nunn, G.B. (1992) Nematode molecular evolution. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 228 pp.

    O’Connor, B.M. (1988) Coevolution in astigmatid mite-bee associations. In: Needham, G.R., Page, R.E. Jr., Delfinado-Baker, M. & Bowman, C. (Eds.), Africanized Honey Bees and Bee Mites. Ellis Horwood Limited, Chichester, pp. 339–346.

    O’Connor, B.M. (1994) Life-history modifications in astigmatid mites. In: Houck, M.A. (Ed.), Mites: Ecological and Evolutionary Studies of Life-history Patterns. Chapman & Hall, New York, pp. 136–159.

    https://doi.org/10.1007/978-1-4615-2389-5_6

    O’Connor, B.M. (1996) Two new mites (Acari: Acaridae) associated with long-tongued bees (Hymenoptera: Apidae) in North America. Journal of the Kansas Entomological Society, 69 (Supplement 4), 15–34.

    O’Connor, B.M. (2001) Historical ecology of the Acaridae (Acari): Phylogentic evidence for host and habitat shifts. In: Halliday, RB, Walter, D.E., Proctor, H.C., Norton, R.A. & Collof, M.J. (Eds.), Acarology: Proceedingsof the 10th International Congress. SCIRO Publishing, Melbourne, pp. 76–82.

    O’Connor, B.M. (2003) North American Bee-associated Mites. University of Michigan, Museum of Zoology. Last modified 17 July 2012. Available from: http://insects.ummz.lsa.umich.edu/beemites/ index.html (accessed 15 August 2018)

    Posada, D. & Crandall, K.A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics, 14, 817–818.

    https://doi.org/10.1093/bioinformatics/14.9.817

    Rambaut, A. & Drummond, A.J. (2007) Tracer. Version 1.4. Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 15 May 2020)

    Schatz, H., Behan-Pelletier, V.M., O’Connor, B.M. & Norton R.A. (2011) Suborder Oribatida van der Hammen, 1968. In: Zhang, Z.-Q. (Ed.), Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148 (1), pp. 141–148.

    https://doi.org/10.11646/zootaxa.3148.1.26

    Zakhvatkin, A.A. (1941) Fauna of U.S.S.R. Arachnoidea. Vol. VI. No. 1. Tyroglyphoidea [Acari]. American Institute of Biological Sciences, Washington, D.C.. 573 pp. [translation by Ratcliffe, A. & Hughes, A.M. (1959)]

    Zhang, Z.-Q. (2018) Repositories for mite and tick specimens: acronyms and their nomenclature. Systematic and Applied Acarology, 23, 2432–2446.

    https://doi.org/10.11158/saa.23.12.12