Abstract
A new species of the Liolaemus capillitas clade is described. Liolaemus galactostictos sp. nov. differs from other members of its group by a combination of morphological and molecular traits, in particular its black dorsal coloration pattern not found in any other Liolaemus species. Liolaemus galactostictos sp. nov. is only known from its type locality. This new species is found in rocky fields surrounded by grasslands on the top of the Velasco Mountains, a ¨sky island environment¨, in northwestern Argentina. As well as other members of its clade this species seems to be strictly saxicolous, viviparous and feeds on insects.
References
Adams, D.C., Collyer, M.L. & Kaliontzopoulou, A. (2020) Geomorph: Software for geometric morphometric analyses. R package. Version 3.2.1. Available from: https://cran.r-project.org/package=geomorph/ (accessed 1 March 2020)
Anderson, M.J. (2008) A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46.
https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
Avila, L.J., Morando, M., Pérez, C.H.F. & Sites Jr., J.W. (2004) Phylogenetic relationships of lizards of the Liolaemus petrophilus group (Squamata, Liolaemidae), with description of two new species from western Argentina. Herpetologica, 60 (2), 187–203.
Breitman, M.F., Avila, L.J., Sites Jr., J.W. & Morando, M. (2012) How lizards survived blizzards: phylogeography of the Liolaemus lineomaculatus group (Liolaemidae) reveals multiple breaks and refugia in southern Patagonia and their concordance with other codistributed taxa. Molecular Ecology, 21 (24), 6068–6085.
https://doi.org/10.1111/mec.12075
Burkart, R., Bárbaro, N.O., Sánchez, R.O. & Gómez, D.A. (1999) Eco-regiones de la Argentina. Administración de Parques Nacionales, Buenos Aires, 42 pp.
Cabrera, A.L. (1971) Fitogeografía de la República Argentina. Boletín de la Sociedad Argentina de Botánica, 14, 1–42.
Cabrera, A.L. (1976) Regiones fitogeográficas argentinas. In: Kugler, W.F. (Ed.), Enciclopedia Argentina de Agricultura y Jardinería. ACME, Buenos Aires, pp. 1-85.
Cabrera, A.L. & Willink, A. (1980) Biogeografía de América Latina. Monografías Organizacion de Estados Americanos Serie Biología, 13, 1–122.
Collyer, M.L. & Adams, D.C. (2020) RRPP: Linear Model Evaluation with Randomized Residuals in a Permutation Procedure. Available from: https://cran.r-project.org/web/packages/RRPP/ (accessed 1 March 2020)
Collyer, M.L., Sekora, D.J. & Adams, D.C. (2015) A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity, 115, 357–365.
https://doi.org/10.1038/hdy.2014.75
Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9 (8), 772.
https://doi.org/10.1038/nmeth.2109
de los Hoyos, C.R., Willner, A.P., Larrovere, M.A., Rossi, J.N., Toselli, A.J. & Basei, M.A.S. (2011) Tectonothermal evolution and exhumation history of the Paleozoic Proto-Andean Gondwana margin crust: The Famatinian Belt in NW Argentina. Gondwana Research, 20, 309–324.
https://doi.org/10.1016/j.gr.2010.12.004
De Queiroz, K. (1998) The general lineage concept of species, species criteria, and the process of speciation. In: Howard, D.J. & Berlocher, S.H. (Eds.), Endless Forms: Species and Speciation. Oxford University Press, Oxford, pp. 57–75.
Espinoza, R.E., Lobo, F. & Cruz, F.B. (2000) Liolaemus heliodermis, a new lizard from northwestern Argentina with remarks on the content of the elongatus group (Iguania: Tropiduridae). Herpetologica, 56, 507–516.
Espinoza, R.E. & Lobo, F. (2003) Two new species of Liolaemus lizards from northwestern Argentina: speciation within the northern subclade of the elongatus group (Iguania: Liolaemidae). Herpetologica, 59, 89–105.
https://doi.org/10.1655/0018-0831(2003)059[0089:TNSOLL]2.0.CO;2
Excoffier, L., Laval, G. & Schneider, S. (2005) Arlequin (Version 3.01): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1, 47–50.
https://doi.org/10.1177/117693430500100003
Guindon, S. & Gascuel, O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology, 52, 696–704.
https://doi.org/10.1080/10635150390235520
Fox, J. & Weisberg, S. (2019) An {R} Companion to Applied Regression. 3rd Edition. Sage, Thousand Oaks, California. Available from: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (accessed 23 April 2020)
Frost, D.R. (1992) Phylogenetic analysis and taxonomy of the Tropidurus group of lizards (Iguania, Tropiduridae). American Museum Novitates, 3033, 1–68.
Goodall, C.R. (1991) Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society B, 53, 285–339.
https://doi.org/10.1111/j.2517-6161.1991.tb01825.x
Heath, L., van der Walt, V., Varsani, A. & Martin, D.P. (2006) Recombination patterns in aphthoviruses mirror those found in other picornaviruses. Journal of Virology, 80, 11827–11832.
https://doi.org/10.1128/JVI.01100-06
Hedges, L.V. & Olkin, I. (1985) Statistical methods for meta-analysis. Academic Press. San Diego, California, 369 pp.
Heled, J. & Drummond, A. (2010) Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27, 570–580.
https://doi.org/10.1093/molbev/msp274
Huelsenbeck, J.P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics, 17, 754–755.
https://doi.org/10.1093/bioinformatics/17.8.754
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066.
https://doi.org/10.1093/nar/gkf436
Klingenberg, C.P. & Monteiro, L.R. (2005) Distances and directions in multidimensional shape spaces: implications for morphometric applications. Systematic Biology, 54, 678–688.
https://doi.org/10.1080/10635150590947258
Kocher, T.D., Thomas, W.K., Meyer, A., Eduards, S.V., Pääbo, S., Villablanca, F.X. & Wilson, A.C. (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America, 86, 6196–6200.
https://doi.org/10.1073/pnas.86.16.6196
Köhler, G. (2012) Color catalogue for field biologists. Herpeton Elke Kohler, Offenbach, 49 pp.
Lobo, F. (2001) A phylogenetic analysis of lizards of the Liolaemus chiliensis group (Iguania: Tropiduridae). Herpetological Journal, 11, 137–150.
Martin, D. & Rybicki, E. (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics, 16, 562–563.
https://doi.org/10.1093/bioinformatics/16.6.562
Medina, C.D., Avila, L.J., Sites Jr., J.W. & Morando, M. (2017) Phylogeographic study of the Patagonian lizard complex Liolaemus elongatus (Iguania: Liolaemini) based on mitochondrial and nuclear evidence. Journal of Zoological Systematics and Evolutionary Research, 55 (3), 238–249.
https://doi.org/10.1111/jzs.12163
Morando, M., Avila, L.J. & Sites Jr., J.W. (2003) Sampling strategies for delimiting species: genes, individuals, and populations in the Liolaemus elongatus-kriegi complex (Squamata: Liolaemidae) in Andean—Patagonian South America. Systematic Biology, 52, 159–185.
https://doi.org/10.1080/10635150390192717
Morando, M., Medina, C.D., Minoli, I., Pérez, C.H.F., Sites Jr., J.W. & Avila, L.J. (2020) Diversification and evolutionary histories of Patagonian steppe lizards. In: Morando, M. & Avila, L.J. (Eds.), Lizards of Patagonia. Springer Nature, Cham, pp. 217–254.
https://doi.org/10.1007/978-3-030-42752-8_9
Morello, J., Matteucci, S.D., Rodríguez, A.F. & Silva, M.E. (2012) Ecorregiones y complejos ecosistémicos argentinos. Orientación Gráfica Editora, Buenos Aires, 752 pp.
Noonan, P.B. & Yoder, A.E. (2009) Anonymous nuclear markers for malagasy plated lizards (Zonosaurus). Molecular Ecology Resources, 9, 402–404.
https://doi.org/10.1111/j.1755-0998.2008.02250.x
Olave, M., Martínez, L.E., Avila, L.J., Sites Jr., J.W. & Morando, M. (2011) Evidence of hybridization in the Argentinean lizards Liolaemus gracilis and L. bibronii (Iguania: Liolaemini): an integrative approach based on genes and morphology. Molecular Phylogenetic and Evolution, 61 (2), 381–391.
https://doi.org/10.1016/j.ympev.2011.07.006
Olave, M., Gonzalez Marín, A., Avila, L.J., Sites Jr., J.W. & Morando, M. (2020) Disparate patterns of diversification within Liolaemini lizards. In: Rull, V. & Carnaval, A. (Eds.), Neotropical Diversification. Springer Nature, Cham, pp. 765–790.
https://doi.org/10.1007/978-3-030-31167-4_28
Portik, D.M., Wood, P.L., Grismer, J.L., Stanley, E.L. & Jackman, T.R. (2011) Identification of 104 rapidly-evolving nuclear protein-coding markers for amplification across scaled reptiles using genomic resources. Conservation Genetics Resources, 4, 1–10.
https://doi.org/10.1007/s12686-011-9460-1
Quinteros, A.S., Abdala, C.S., Díaz Gómez, J.M. & Scrocchi, G.J. (2008) Two new species of Liolaemus (Iguania: Liolaemidae) of central west Argentina. South American Journal of Herpetology, 3, 101–111.
https://doi.org/10.2994/1808-9798(2008)3[101:TNSOLI]2.0.CO;2
Rambaut, A. & Drummond, A.J. (2009) Tracer. Version 1.4. Available from: http://beast.bio.ed.ac.uk/Tracer/ (accessed 1 June 2020)
Ramos, R. (1999) Rasgos estructurales del Territorio Argentino. In: Caminos, R., Panza, J.L., Etcheverria, M.P., Pezzutti, N.E. & Rastelli, D.C. (Eds.), Geología Argentina. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Anales, Buenos Aires, pp. 715–784.
Reboratti C. (2006) Situación ambiental en las ecorregiones Puna y Altos Andes. In: Brown, A., Martínez Ortiz, U., Acerbi, M. & Corcuera, J. (Eds.), La Situación Ambiental Argentina 2005. Fundación Vida Silvestre Argentina, Buenos Aires, pp. 33–39.
Robles, C. & Halloy, M. (2011) Observaciones preliminares sobre la historia natural de Liolaemus heliodermis (Iguania: Liolaemidae): una lagartija endémica del Noroeste Argentino. Acta Zoológica Lilloana, 55 (2), 264–271.
Rohlf, F.J. (2015) tpsDig. Version 2.16. Ecology and Evolution. SUNY, Stony Brook, New York. Available from: http://life.bio.sunysb.edu/morph/ (accessed 2 March 2020)
Ronquist, F. & Huelsenbeck, J.P. (2003) Mr Bayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.
https://doi.org/10.1093/bioinformatics/btg180
Simmons, J.E. (2015) Herpetological collecting and collections managements. Herpetological Circular Society for the Study of Amphibians and Reptiles, 42, 1–191.
Smith, H.M. (1946) Handbook of lizards. Comstock Publishing Company, Ithaca, New York, 557 pp.
Torchiano, M. (2020) effsize: Efficient effect size computation. R package. Version 0.7.1. Available from: https://CRAN.R-project.org/package=effsize/ (accessed 1 March 2020)
https://doi.org/10.5281/zenodo.1480624
Wiens, J.J., Kuczynski, C.A., Arif, S. & Reeder, T.W. (2010) Phylogenetic relationships of phrynosomatid lizards based on nuclear and mitochondrial data, and a revised phylogeny for Sceloporus. Molecular Phylogenetics and Evolution, 54, 150–161.
https://doi.org/10.1016/j.ympev.2009.09.008
Zelditch, M.L., Swiderski, D.L. & Sheets, H.D. (2012) Geometric morphometrics for biologists: a primer. Elsevier Academic Press, London, 488 pp.