Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-03-10
Page range: 487–510
Abstract views: 184
PDF downloaded: 16

Comparative description of the mitochondrial genome of Scaphidium formosanum Pic, 1915 (Coleoptera: Staphylinidae: Scaphidiinae)

Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No.20 Road East. 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024, China.
Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No.20 Road East. 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024, China.
Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No.20 Road East. 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024, China.
Coleoptera Scaphidium formosanum mitochondrial genome molecular identification Staphylinidae Scaphidiinae

Abstract

Scaphidium is a rove beetle genus (Coleoptera: Staphylinidae) of remarkable and diverse colouration. Although most of Scaphidium species are easily distinguished by the colour patterns, there exist some confusing variants, which may introduce bias into rapid identification. Molecular identification using the mitochondrial genome is a reliable approach that overcomes the shortcoming of morphological recognition for those who have limited experience in species-level identification. Here we described the nearly complete mitochondrial genome of Scaphidium formosanum Pic, 1915, a species with variant colour types, and tested the reliability of identification based on mitochondrial genes by both gene-wise metrics and phylogenetic analyses. In this study, the 17,455 bp mitochondrial genome of S. formosanum is composed of 13 protein-coding genes (PCGs), 22 tRNAs, and 2 rRNAs. All PCGs start with typical ATN codons, except Nad4l which began with the TTG codon. The gene order is consistent with the typical linear arrangement of the published rove beetle mitochondrial genomes. The nucleotide composition is highly A+T biased (76.42%): A - 39.99%, T - 36.44%, C - 15.08%, and G - 8.49%. Multiple metrics support that our sample has a higher similarity to S. quadrimaculatum than to other species. Maximum likelihood trees confirm the placement of our sample as the closest related entity to S. quadrimaculatum. We conclude that the mitochondrial genome has a reliable performance in molecular identification in this case.

 

References

  1. Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M. & Stadler, P.F. (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69, 313–319. https://doi.org/10.1016/j.ympev.2012.08.023

    Blanquart, S. & Lartillot, N. (2008) A site- and time-heterogeneous model of amino acid replacement. Molecular Biology and Evolution 25, 842–858.

    https://doi.org/10.1093/molbev/msn018

    Butt, A.M., Nasrullah, I., Qamar, R. & Tong, Y. (2016) Evolution of codon usage in Zika virus genomes is host and vector specific. Emerging Microbes & Infections 5, e107.

    https://doi.org/10.1038/emi.2016.106

    Cai, C.-Y., Tihelka, E., Pisani, D. & Donoghue, P.C.J. (2020) Data curation and modeling of compositional heterogeneity in insect phylogenomics: a case study of the phylogeny of Dytiscoidea (Coleoptera: Adephaga). Molecular Phylogenetics and Evolution 147, 106782.

    https://doi.org/10.1016/j.ympev.2020.106782

    Cao, J.-J., Wang, Y., Huang, Y.-R. & Li, W.-H. (2019) Mitochondrial genomes of the stoneflies Mesonemoura metafiligera and Mesonemoura tritaenia (Plecoptera, Nemouridae), with a phylogenetic analysis of Nemouroidea. ZooKeys 835, 43–63. https://doi.org/10.3897/zookeys.835.32470

    Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. (2009) TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.

    https://doi.org/10.1093/bioinformatics/btp348

    Castoe, T.A., Sasa, M.M. & Parkinson, C.L. (2005) Modeling nucleotide evolution at the mesoscale: the phylogeny of the neotropical pitvipers of the Porthidium group (Viperidae: Crotalinae). Molecular Phylogenetics and Evolution 37, 881–898. https://doi.org/10.1016/j.ympev.2005.05.013

    Chakraborty, S., Barbhuiya, P.A., Paul, S., Uddin, A., Choudhury, Y., Ahn, Y. & Cho, Y.S. (2020) Codon usage trend in genes associated with obesity. Biotechnology Letters 42, 1865–1875.

    https://doi.org/10.1007/s10529-020-02931-z

    Gruber, A.R., Bernhart, S.H. & Lorenz, R. (2015) The ViennaRNA Web Services. In: Picardi, E. (Ed), RNA Bioinformatics. Methods in Molecular Biology. Springer, New York, NY, pp. 307–326.

    https://doi.org/10.1007/978-1-4939-2291-8_19

    Hassanin, A., Léger, N. & Deutsch, J. (2005) Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Systematic Biology 54, 277–298.

    https://doi.org/10.1080/10635150590947843

    Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522.

    https://doi.org/10.1093/molbev/msx281

    Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.

    https://doi.org/10.1038/nmeth.4285

    Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.

    https://doi.org/10.1093/molbev/mst010

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 1547–1549.

    https://doi.org/10.1093/molbev/msy096

    Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.

    https://doi.org/10.1093/bioinformatics/btm404

    Lartillot, N. & Philippe, H. (2004) A bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution 21, 1095–1109.

    https://doi.org/10.1093/molbev/msh112

    Lee, J., Park, J., Xi, H. & Park, J. (2020) Comprehensive analyses of the complete mitochondrial genome of Figulus binodulus (Coleoptera: Lucanidae). Journal of Insect Science 20.

    https://doi.org/10.1093/jisesa/ieaa090

    Leschen, R.A.B. & Löbl, I. (1995) Phylogeny of Scaphidiinae with redefinition of tribal and generic limits (Coleoptera: Staphylinidae). Revue suisse de zoologie. 102, 425–474.

    https://doi.org/10.5962/bhl.part.80472

    Li, W.-H. (1997) Molecular Evolution. Sinauer Associates Inc., Sunderland, Massachusetts, xv+487 pp.

    Li, X.-Y., Chen, H.-F. & Lü, L. (2020) Two new species of the genus Scaphidium Olivier (Coleoptera: Staphylinidae: Scaphidiinae) from Southwest China. Zootaxa 4868, 435–440.

    https://doi.org/10.11646/zootaxa.4868.3.7

    Lin, A., Song, N., Zhao, X. & Zhang, F. (2018) Analysis of the nearly complete mitochondrial genome of Paederus fuscipes (Coleoptera: Staphylinidae). Mitochondrial DNA Part B 3, 85–87.

    https://doi.org/10.1080/23802359.2017.1422410

    Löbl, I. & Leschen, R.A.B. (2003) Scaphidiinae (Insecta: Coleoptera: Staphylinidae). Fauna of New Zealand 48, 94 pp.

    https://doi.org/10.7931/J2/FNZ.48

    Lü, L., Cai, C.-Y., Zhang, X., Newton, A.F., Thayer, M.K. & Zhou, H.-Z. (2020) Linking evolutionary mode to palaeoclimate change reveals rapid radiations of staphylinoid beetles in low-energy conditions. Current Zoology 66, 435–444.

    https://doi.org/10.1093/cz/zoz053

    Mckenna, D.D., Farrell, B.D., Caterino, M.S., Farnum, C.W., Hawks, D.C., Maddison, D.R., Seago, A.E., Short, A.E.Z., Newton, A.F. & Thayer, M.K. (2015) Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: forest litter as a stepping stone for diversification of nonphytophagous beetles. Systematic Entomology 40, 35–60.

    https://doi.org/10.1111/syen.12093

    Meng, G., Li, Y., Yang, C. & Liu, S. (2019) MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research 47, e63.

    https://doi.org/10.1093/nar/gkz173

    Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.

    https://doi.org/10.1093/molbev/msu300

    Philippe, H., Brinkmann, H., Lavrov, D.V., Littlewood, D.T.J., Manuel, M., Wörheide, G. & Baurain, D. (2011) Resolving difficult phylogenetic questions: Why more sequences are not enough. PLOS Biology 9, e1000602.

    https://doi.org/10.1371/journal.pbio.1000602

    Pic, M. (1915) Diagnoses de nouveaux genres et nouvelles espèces de Scaphidiides. L’Echange, Revue Linnéenne 31, 35–36.

    Rambaut, A. (2018) FigTree: tree figure drawing tool. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. Available from: http://tree.bio.ed.ac.uk/software/figtree/

    Sun, H., Zhao, W., Lin, R., Zhou, Z., Huai, W. & Yao, Y. (2020) The conserved mitochondrial genome of the jewel beetle (Coleoptera: Buprestidae) and its phylogenetic implications for the suborder Polyphaga. Genomics 112, 3713–3721.

    https://doi.org/10.1016/j.ygeno.2020.04.026

    Tang, L., Li, L.-Z. & He, W.-J. (2014) The genus Scaphidium Olivier in east China (Coleoptera, Staphylinidae, Scaphidiinae). ZooKeys 403, 47–96.

    https://doi.org/10.3897/zookeys.403.7220

    Timmermans, M.J.T.N., Barton, C., Haran, J., Ahrens, D., Culverwell, C.L., Ollikainen, A., Dodsworth, S., Foster, P.G., Bocak, L. & Vogler, A.P. (2016) Family-level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and phylogenetics. Genome Biology and Evolution 8, 161–175.

    https://doi.org/10.1093/gbe/evv241

    Wang, H.-C., Minh, B.Q., Susko, E. & Roger, A.J. (2018) Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Systematic Biology 67, 216–235.

    https://doi.org/10.1093/sysbio/syx068

    Wang, J., Dai, X.-Y., Xu, X.-D., Zhang, Z.-Y., Yu, D.-N., Storey, K.B. & Zhang, J.-Y. (2019) The complete mitochondrial genomes of five longicorn beetles (Coleoptera: Cerambycidae) and phylogenetic relationships within Cerambycidae. PeerJ 7, e7633.

    https://doi.org/10.7717/peerj.7633

    Wang, Y., Cao, J.-J., Li, N., Ma, G.-Y. & Li, W.-H. (2019) The first mitochondrial genome from Scopuridae (Insecta: Plecoptera) reveals structural features and phylogenetic implications. International Journal of Biological Macromolecules 122, 893–902.

    https://doi.org/10.1016/j.ijbiomac.2018.11.019

    Wong, E.H.M., Smith, D.K., Rabadan, R., Peiris, M. & Poon, L.L.M. (2010) Codon usage bias and the evolution of influenza A viruses. Codon usage biases of influenza virus. BMC Evolutionary Biology 10, 253.

    https://doi.org/10.1186/1471-2148-10-253

    Zhang, D., Gao, F., Jakovlić, I., Zou, H., Zhang, J., Li, W.X. & Wang, G.T. (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20, 348–355.

    https://doi.org/10.1111/1755-0998.13096

    Zhang, R., Li, J., Geng, S., Yang, J., Zhang, X., An, Y., Li, C., Cui, H., Li, X. & Wang, Y. (2020) The first mitochondrial genome for Phaudidae (Lepidoptera) with phylogenetic analyses of Zygaenoidea. International Journal of Biological Macromolecules 149, 951–961.

    https://doi.org/10.1016/j.ijbiomac.2020.01.307