Abstract
The weevil genera Aethiopacorep Voisin and Titilayo Cristóvão & Lyal are the only native African members of the nearly pantropical and poorly known tribe Anchonini. All Anchonini are flightless, a trait likely limiting dispersal, yet these weevils are found on both sides of the Atlantic Ocean. A phylogenetic analysis of 79 terminals and 3248 aligned positions from one mitochondrial and two nuclear ribosomal fragments supports a clade of West African Anchonini nested within American Anchonini. As suggested by previous authors, the Asian genera Himalanchonus Zherikhin and Otibazo Morimoto do not form a clade with the tribe’s core, and along with Cycloterinus Kolbe, Euthycodes Pascoe, Leptanchonus Morimoto, Nepalanchonus Zherikhin, and Tanyomus Champion, are here removed from Anchonini and placed as Molytinae incertae sedis. So defined, the monophyletic tribe Anchonini contains 36 genus-group names, all but two denoting American taxa. Using molecular clock analysis, we estimate the separation of the West African Anchonini from its American sister at 9.5–5.2 million years ago (Ma). This date greatly postdates the Cretaceous opening of the Atlantic Ocean (about 100 Ma) and, therefore, evokes a single transatlantic dispersal to West Africa, likely by over-water rafting, leading to subsequent diversification. We postulate this to be the first documented eastwards crossing of the Atlantic Ocean by terrestrial non-volant arthropods based on morphological and molecular data.
References
Abadi, S., Azouri, D., Pupko, T. & Mayrose, I. (2019) Model selection may not be a mandatory step for phylogeny reconstruction. Nature Communication, 10 (934), 1–11.
https://doi.org/10.1038/s41467-019-08822-w
Alonso-Zarazaga, M.A. & Lyal, C.H.C. (1999) A World Catalogue of Families and Genera of Curculionoidea (Insecta: Coleoptera) (excepting Scolytidae and Platypodidae). Entomopraxis, Barcelona, 315 pp.
Alström, P., Jønsson, K.A., Fjeldså, J., Ödeen, A., Ericson, P.G.P. & Irestedt, M. (2015) Dramatic niche shifts and morphological change in two insular bird species. Royal Society Open Science, 2 (140364), 1–9.
https://doi.org/10.1098/rsos.140364
Andújar, C., Serrano, J. & Gómez-Zurita, J. (2012) Winding up the molecular clock in the genus Carabus (Coleoptera: Carabidae): assessment of methodological decisions on rate and node age estimation. BMC Evolutionary Biology, 12 (40), 1–16.
https://doi.org/10.1186/1471-2148-12-40
Bauzà-Ribot, M.M., Juan C., Nardi, F., Oromí, P., Pons, J. & Jaume, D. (2012) Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans. Current Biology, 22 (21), 2069–2074.
https://doi.org/10.1016/j.cub.2012.09.012
Brower, A.V.Z. (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from mitochondrial DNA evolution. PNAS, 91, 6491–6495.
https://doi.org/10.1073/pnas.91.14.6491
Brown, W. M., George, M. & Wilson, A.C. (1979) Rapid evolution of animal mitochondrial DNA. PNAS, 76, 1967–1971.
https://doi.org/10.1073/pnas.76.4.1967
Clarke, D.J., Limaye, A., McKenna, D.D. & Oberprieler, R.G. (2019) The weevil fauna preserved in Burmese amber—snapshot of a unique, extinct lineage (Coleoptera: Curculionoidea). Diversity, 11 (1), 1–219.
https://doi.org/10.3390/d11010001
Cristóvão, J.P. & Lyal, C.H.C. (2018) Anchonini in Africa: new species and genus confirming a transatlantic distribution (Coleoptera: Curculionidae: Molytinae). Diversity, 10 (82), 1–34.
https://doi.org/10.3390/d10030082
Cupello, M., Ribeiro-Costa, C.S. & Vaz-de-Mello, F.Z. (2020) Systematics of the enigmatic South American Streblopus Van Lansberge, 1874 dung beetles and their transatlantic origin: a case study on the role of dispersal events in the biogeographical history of the Scarabaeinae (Coleoptera: Scarabaeidae). European Journal of Taxonomy, 603, 1–85.
https://doi.org/10.5852/ejt.2020.603
de Queiroz, A. (2014) The Monkey’s Voyage: How Improbable Journeys Shaped the History of Life. Basic Books, New York, 360 pp.
Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.
https://doi.org/10.1093/molbev/mss075
Frolov, A.V. (2013) Stenosternus Karsch, a possible link between Neotropical and Afrotropical Orphninae (Coleoptera, Scarabaeidae). ZooKeys, 335, 33–46.
https://doi.org/10.3897/zookeys.335.5471
Frolov, A.V. & Akhmetova, L.A. (2015) Rediscovery of the enigmatic Stenosternus costatus Karsch (Coleoptera: Scarabaeidae: Orphninae) from São Tomé Island. Zootaxa, 4007 (3), 440–444.
https://doi.org/10.11646/zootaxa.4007.3.12
Gamble, T., Bauer, A.M., Colli, G.R., Greenbaum, E., Jackman, T.R., Vitt, L.J. & Simons, A.M. (2011) Coming to America: multiple origins of New World geckos. Journal of Evolutionary Biology, 24, 231–244.
https://doi.org/10.1111/j.1420-9101.2010.02184.x
Gillett, C.P.D.T., Crampton-Platt, A., Timmermans, M.J.T.N., Jordal, B.H., Emerson, B.C. & Vogler, A.P. (2014) Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea). Molecular Biology and Evolution, 31, 2223–2237.
https://doi.org/10.1093/molbev/msu154
Granot, R. & Dyment, J. (2015) The Cretaceous opening of the South Atlantic Ocean. Earth and Planetary Science Letters, 414, 156–163.
https://doi.org/10.1016/j.epsl.2015.01.015
Grebennikov, V. (2017) Phylogeography and sister group of Lupangus, a new genus for three new flightless allopatric forest litter weevils endemic to the Eastern Arc Mountains, Tanzania (Coleoptera: Curculionidae, Molytinae). Fragmenta entomologica, 49, 37–55.
https://doi.org/10.4081/fe.2017.229
Grebennikov, V.V. (2018) Discovery of Lymantini weevils (Coleoptera: Curculionidae: Molytinae) outside the Americas: Devernodes, a new genus for five new species from Southeast Asia. Zootaxa, 4500 (3), 363–380.
https://doi.org/10.11646/zootaxa.4500.3.4
Grebennikov, V.V. (2020) Tazarcus, a new phylogenetically unplaced genus of two flightless weevils with metapleural ridge from the Eastern Arc Mountains, Tanzania (Coleoptera: Curculionidae: Molytinae). Zootaxa, 4766 (3), 421–434.
https://doi.org/10.11646/zootaxa.4766.3.2
Gunter, N.L., Oberprieler, R.G. & Cameron, S.L. (2016) Molecular phylogenetics of Australian weevils (Coleoptera: Curculionoidea): exploring relationships in a hyperdiverse lineage through comparison of independent analyses. Austral Entomology, 55, 217–233.
https://doi.org/10.1111/aen.12173
Haran, J., Timmermans, M.J.T.N. & Vogler, A.P. (2013) Mitogenome sequences stabilize the phylogenetics of weevils (Curculionoidea) and establish the monophyly of larval ectophagy. Molecular Phylogenetics and Evolution, 67, 156–166.
https://doi.org/10.1016/j.ympev.2012.12.022
Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270, 313–321.
https://doi.org/10.1098/rspb.2002.2218
Katoh, K., Rozewicki, J. & Yamada, K.D. (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, bbx108, 1–7.
https://doi.org/10.1093/bib/bbx108
Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
https://doi.org/10.1093/molbev/msw054
Lee, D.C., Halliday, A., Fitton, J. & Poli, G. (1994) Isotopic variations with distances and time in the volcanic islands of the Cameroon line: evidence for a mantle plume origin. Earth Planet Science Letters, 123, 119–138.
https://doi.org/10.1016/0012-821X(94)90262-3
Longrich, N.R., Vinther, J., Pyron, R.A., Pisani, D. & Gauthier, J.A. (2015) Biogeography of worm lizards (Amphisbaenia) driven by end-Cretaceous mass extinction. Proceedings of the Royal Society B, Biological Sciences, 282 (20143034), 1–10.
https://doi.org/10.1098/rspb.2014.3034
Longrich, N.R., Suberbiola, X.P., Pyron, R.A. & Jalil, N.-E. (2021) The first duckbill dinosaur (Hadrosauridae: Lambeosaurinae) from Africa and the role of oceanic dispersal in dinosaur biogeography. Cretaceous Research, 120, 104678. [published online]
https://doi.org/10.1016/j.cretres.2020.104678
Luo, Y., Goh., S.P., Li, D., Gonzaga, M.O., Santos, A.J., Tanikawa, A., Yoshida, H., Haddad, C.R., May-Collado, L.J., Gregorič, M., Turk, E., Kuntner, M. & Agnarsson, I. (2020) Global diversification of Anelosimus spiders driven by long-distance overwater dispersal and Neogene climate oscillations. Systematic Biology, 69, 1122–1135.
https://doi.org/10.1093/sysbio/syaa017
Lyal, C.H.C. (2014) 3.7.7 Molytinae Schoenherr, 1823. In: Leschen, R.A.B. & Beutel, R.G. (Eds.), Handbook of Zoology, Arthropoda: Insecta: Coleoptera. Vol. 3. Morphology and Systematics (Phytophaga). Walter de Gruyter, Berlin, pp. 529–570.
Maddison, W.P. & Maddison, D.R. (2020) Mesquite: a modular system for evolutionary analysis. Version 3.5. Program and documentation. Available from: http://mesquiteproject.org (accessed 10 July 2020)
Maddison, D.R., Sproul, J.S. & Mendel, M. (2019) Origin and adaptive radiation of the exceptional and threatened bembidiine beetle fauna of St Helena (Coleoptera: Carabidae). Zoological Journal of the Linnean Society, 189, 1123–1154.
https://doi.org/10.1093/zoolinnean/zlz150
Mariño-Péreza, R. & Song, H. (2019) On the origin of the New World Pyrgomorphidae (Insecta: Orthoptera). Molecular Phylogenetics and Evolution, 139 (106537), 1–12.
https://doi.org/10.1016/j.ympev.2019.106537
Miller, M., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, Louisiana, 2010, pp. 1–8.
https://doi.org/10.1109/GCE.2010.5676129
Murray, E.A. & Heraty, J.M. (2016) Invading Africa: A novel transoceanic dispersal by a New World ant parasitoid. Journal of Biogeography, 43, 1750–1761.
https://doi.org/10.1111/jbi.12789
Omland, K.E., Cook, L.G. & Crisp, M.D. (2008) Tree thinking for all biology: the problem with reading phylogenies as ladders of progress. BioEssays, 30, 854–867.
https://doi.org/10.1002/bies.20794
Papadopoulou, A., Anastasiou, I. & Vogler, A.P. (2010) Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Molecular Biology and Evolution, 27, 1659–1672.
https://doi.org/10.1093/molbev/msq051
Peck, S.B. (2006) The Beetles of the Galápagos Islands, Ecuador: Evolution, Eecology, and Diversity (Insecta: Coleoptera). NRC Research Press, Ottawa, Ontario, Canada, 314 pp.
Pereira, A.G. & Schrago, C.G. (2017) Arrival and diversification of mabuyine skinks (Squamata: Scincidae) in the Neotropics based on a fossil-calibrated timetree. PeerJ, 5 (e3194), 1–21.
https://doi.org/10.7717/peerj.3194
Poinar, G. (2010) Palaeoecological perspectives in Dominican amber. Annales de la Société Entomologique de France, 46, 23–52.
https://doi.org/10.1080/00379271.2010.10697637
Poinar, G. & Legalov, A. (2019) Two new species of the genus Anchonus Schoenherr, 1825 (Coleoptera: Curculionidae: Molytinae) in Dominican amber. Palaeontologia Electronica, 22.3.59, 1–10.
Poinar, G. Jr. & Voisin, J.F. (2003) A Dominican amber weevil, Velatis dominicana gen. n., sp. n. and key to the genera of the Anchonini (Molytinae, Curculionidae). Nouvelle Revue d’Entomologie, 19, 373–381.
Poussereau, J. & Voisin, J.F. (2002) Discovery of Anchonus interruptus Fahraeus in Reunion Island (Coleoptera, Curculionidae). Bulletin de la Societe Entomologique de France, 107, 281–283.
Poux, C., Madsen, O., Marquard, E., Vieites, D.R., de Jong, W.W. & Vences, M. (2005) Asynchronous colonization of Madagascar by the four endemic clades of Primates, Tenrecs, Carnivores, and Rodents as inferred from nuclear genes. Systematic Biology, 54, 719–730.
https://doi.org/10.1080/10635150500234534
Rambaut, A. (2020) FigTree v1.4.4. Available at: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 10 July 2020)
Ratnasingham, S. & Hebert, P.D.N. (2007) BOLD: the barcode of life data system. Molecular Ecology Notes, 7, 355–364.
https://doi.org/10.1111/j.1471-8286.2007.01678.x
Reeves, C. (2020) Earthworks: Gondwana. Available from: http://www.reeves.nl/gondwana (accessed 16 July 2020)
Renner, S. (2004) Plant dispersal across the tropical Atlantic by wind and sea currents. International Journal of Plant Sciences, 165 (Supplement 4), 23–33.
https://doi.org/10.1086/383334
Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S. & Chandler M. (2012) Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews, 113, 212–270.
https://doi.org/10.1016/j.earscirev.2012.03.002
Shin, S., Clarke, D.J., Lemmon, A.R., Lemmon, E.M., Aitken, A.L., Haddad, S., Farrell, B.D., Marvaldi, A.E., Oberprieler, R.G. & McKenna, D.D. (2017) Phylogenomic data yield new and robust insights into the phylogeny and evolution of weevils. Molecular Biology and Evolution, 35, 823–836.
https://doi.org/10.1093/molbev/msx324
Seiffert, E.R., Tejedor, M.F., Fleagle, J.G., Novo, N.M., Cornejo, F.M., Bond, M., de Vries, D. & Campbell, K.E. (2020) A parapithecid stem anthropoid of African origin in the Paleogene of South America. Science, 368 (6487), 194–197.
https://doi.org/10.1126/science.aba1135
Somoza, R. & Zaffarana, C.B. (2008) Mid-Cretaceous polar standstill of South America, motion of the Atlantic hotspots and the birth of the Andean cordillera. Earth and Planetary Science Letters, 271, 267–277.
https://doi.org/10.1016/j.epsl.2008.04.004
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.
https://doi.org/10.1093/bioinformatics/btu033
Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57, 758–771.
https://doi.org/10.1080/10635150802429642
Sturm, H. & Machida, R. (2001) Archaeognatha. Handbook of Zoology. Vol. 4. Part 37. Walter de Gruyter, Berlin, 213 pp.
Svenson, G.J. & Rodrigues, H.M. (2017) A Cretaceous-aged Palaeotropical dispersal established an endemic lineage of Caribbean praying mantises. Proceedings of the Royal Society B, 284, 20171280, 1–9.
https://doi.org/10.1098/rspb.2017.1280
Thomas, M. C. & O’Brien, C. W. (2001) On the genus Anchonus Schoenherr in Florida (Coleoptera: Curculionidae). Insecta Mundi, 13, 229–233.
Vidal, N., Marin, J., Morini, M., Donnellan, S., Branch, W.R., Thomas, R., Vences, M., Wynn, A., Cruaud, C. & Hedges, S.B. (2010) Blindsnake evolutionary tree reveals long history on Gondwana. Biology Letters, 6, 558–561.
https://doi.org/10.1098/rsbl.2010.0220
Voisin, J.-F. (1992) Notes sur les genres de la tribu des Anchonini 1. Généralités, redéfinition du genre Anchonus Schoenherr et description de cinq genres et de deux sous-genres nouveaux (Coleoptera, Curculionidae). Nouvelle Revue d’Entomologie, New Series, 9, 259–271.
Voloch, C.M., Vilela, J.F., Loss-Oliveira, L. & Schrago, C.G. (2013) Phylogeny and chronology of the major lineages of New World hystricognath rodents: insights on the biogeography of the Eocene/Oligocene arrival of mammals in South America. BMC Research News, 6 (160), 1–9.
https://doi.org/10.1186/1756-0500-6-160
Wilke, T., Schultheiß, R. & Albrecht, C. (2009) As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. American Malacological Bulletin, 27, 25–45.
https://doi.org/10.4003/006.027.0203
Zimmerman, E.C. (1964) Anchonus duryi in Southeastern Polynesia (Coleoptera: Curculionidae: Hylobiinae: Anchonini). Psyche, 71, 53–56.
https://doi.org/10.1155/1964/52090