Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-04-14
Page range: 406–429
Abstract views: 778
PDF downloaded: 20

A milestone for Pentatomoidea: Grazia et al. 2008—What do we know and where can we go?

Laboratório de Entomologia Sistemática, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. Programa de Pós-Graduação em Biologia Animal da Universidade Federal do Rio Grande Sul, PPG-BAN
Laboratório de Sistemática e Diversidade de Artrópodes, Unidade Educacional Penedo, Campus Arapiraca, Universidade Federal de Alagoas, Penedo, Alagoas, Brazil
Laboratório de Entomologia, Sistemática e Biogeografia—LESB, Universidade Federal do Rio Grande—FURG, Instituto de Ciências Biológicas, Rio Grande, Rio Grande do Sul, Brazil
Programa de Pós-Graduação em Biologia Animal da Universidade Federal do Rio Grande Sul, PPG-BAN Laboratório de Entomologia, Sistemática e Biogeografia—LESB, Universidade Federal do Rio Grande—FURG, Instituto de Ciências Biológicas, Rio Grande, Rio Grande do Sul, Brazil
Hemiptera Heteroptera Pentatomorpha Stink bug Molecular data True bugs

Abstract

Pentatomoidea is the third largest superfamily in Heteroptera. The internal systematics and classification of this superfamily have an intricate history. The paper by Grazia et al. (2008) is a milestone to the phylogenetic hypothesis of Pentatomoidea. Subsequent papers explored the limited conclusions and unanswered questions left by Grazia et al. (2008). We proposed to look at the body of knowledge produced since Grazia et al. (2008) and to compile the molecular data for Pentatomoidea deposited in Genbank to achieve three aims: (i) to evaluate the advances on the phylogenetic relationships of the Pentatomoidea; (ii) to produce a phylogenetic hypothesis based on molecular data deposited in Genbank; and (iii) to highlight the shortcomings and strengths of the available data. We retrieved sequences of four molecular markers (COI, 16S, 18S, and 28S) for 167 terminal taxa, including 149 pentatomoids. A concatenated matrix was analyzed under maximum likelihood (ML) and parsimony (MP). Both methods supported the monophyly of Pentatomoidea, and poorly resolved internal relationships among the families. Acanthosomatidae, Dinidordae, Pentatomidae, Scutelleridae, Thaumastellidae, and Urostylididae were monophyletic (under ML and MP), and also Plataspidae and Thyreocoridae (under ML). Tessaratomidae and Cydnidae were non-monophyletic under both methods. Our results were compared to the phylogenetic hypotheses proposed for Pentatomoidea. The analysis of the data available on the GenBank allowed us to affirm that many problems mentioned previously remain unsolved, even though the sampling of terminals has increased. In summary, the efforts in the last two decades to better understand the relationships within the Pentatomoidea have been insufficient to propose robust advances in phylogenetic hypothesis for the group. We discuss topics we understand are paramount to upcoming developments:1) better taxon sample; 2) collection management; 3) increased markers; and 4) morphology and anatomical ontology.

 

References

  1. Abadi, S., Azouri, D., Pupko, T. & Mayrose, I. (2019) Model selection may not be a mandatory step for phylogeny reconstruction. Nature communications, 10 (1), 1–11.

    https://doi.org/10.1038/s41467-019-08822-w

    Aberer, A.J., Krompass, D. & Stamatakis, A. (2013) Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Systematic Biology, 62, 162–166.

    https://doi.org/10.1093/sysbio/sys078

    Ahmad, A., Parveen, S., Brożek, J. & Dey, D. (2016) Antennal sensilla of phytophagous and predatory pentatomids (Hemiptera: Pentatomidae): a comparative study of four genera. Zoologischer Anzeiger-A Journal of Comparative Zoology, 261, 48–55.

    https://doi.org/10.1016/j.jcz.2016.03.007

    Barão, K.R., Ferrari, A. & Grazia, J. (2013) Comparative morphology of selected characters of the Pentatomidae foreleg (Hemiptera, Heteroptera). Arthropod Structure & Development, 42(5), 425–435.

    https://doi.org/10.1016/j.asd.2013.04.004

    Barão, K.R., Ferrari, A., Adami, C.V.K. & Grazia, J. (2017) Diversity of the external thoracic scent efferent system of Carpocorini (Heteroptera: Pentatomidae) with character selection for phylogenetic inference. Zoologischer Anzeiger—A Journal of Comparative Zoology, 268, 102–111.

    https://doi.org/10.1016/j.jcz.2016.08.003

    Bianchi, F.M., Bottega, C. & Campos, L.A. (2016) Comparative morphology of the external scent efferent system of dorsal abdominal glands in nymphs of Pentatomidae (Hemiptera: Heteroptera). Zoologischer Anzeiger—A Journal of Comparative Zoology, 263, 66–74.

    https://doi.org/10.1016/j.jcz.2016.04.006

    Bybee, S.M., Zaspel, J.M., Beucke, K.A., Scott, C.H., Smith, B.W. & Branham, M.A. (2010) Are molecular data supplanting morphological data in modern phylogenetic studies? Systematic Entomology, 35 (1), 2–5.

    https://doi.org/10.1111/j.1365-3113.2009.00496.x

    Caterino, M.S., Cho, S. & Sperling, F.A.H. (2000) The current state of insect molecular systematics: a thriving tower of babel. Annual Review of Entomology, 45, 1–54.

    https://doi.org/10.1146/annurev.ento.45.1.1

    China, W.E. & Sater, J.A. (1956) A new subfamily of Urostylidae from Borneo (Hemiptera: Heteroptera). Pacific Science, 10, 410–414.

    Cobben, R.H. (1968) Evolutionary Trends in Heteroptera. Part I. Eggs, Architecture of the Shell, Gross Embryology and Eclosion. Centre for Agricultural Publishing and Documentation, Wageningen, 475 pp.

    Cobben, R.H. (1978) Evolutionary trends in Heteroptera. Part II. Mouthpart-structures and feeding strategies. 78 (5). Mededelingen Landbouwhogeschool, Wageningen, 407pp.

    Derkarabetian, S., Benavides, L.R. & Giribet, G. (2019) Sequence capture phylogenomics of historical ethanol-preserved museum specimens: unlocking the rest of the vault. Molecular Ecology Resources, 19 (6), 1–14.

    https://doi.org/10.1111/1755-0998.13072

    Dolling, W.R. (1981) A rationalized classification of the burrower bugs (Cydnidae). Systematic Entomology, 6, 61–76.

    https://doi.org/10.1111/j.1365-3113.1981.tb00016.x

    Forthman, M., Miller, C.W. & Kimball, R.T. (2019) Phylogenomic analysis suggests Coreidae and Alydidae (Hemiptera: Heteroptera) are not monophyletic. Zoologica Scripta, 48 (4), 520–534.

    https://doi.org/10.1111/zsc.12353

    Friedrich, F., Matsumura, Y., Pohl, H., Bai, M., Hörnschemeyer, T. & Beutel, R.G. (2014) Insect morphology in the age of phylogenomics: innovative techniques and its future role in systematics. Entomological Science, 17, 1–24.

    https://doi.org/10.1111/ens.12053

    Funk, V.A., Edwards, R. & Keeley, S. (2018) The problem with (out) vouchers. Taxon, 67 (1), 3–5.

    https://doi.org/10.12705/671.1

    Gapud, V.P. (1991) A generic revision of the subfamily Asopinae, with consideration of its phylogenetic position in the family Pentatomidae and superfamily Pentatomoidea (Hemiptera Heteroptera). Philippines Entomology, 8 (3), 865–961.

    Garbino, G.S. & Nogueira, M.R. (2017) On the mammals collected by Friedrich Sellow in Brazil and Uruguay (1814-1831), with special reference to the types and their provenance. Zootaxa, 4221 (2), 172–190.

    https://doi.org/10.11646/zootaxa.4221.2.2

    Giribet, G. (2015) Morphology should not be forgotten in the era of genomics–a phylogenetic perspective. Zoologischer Anzeiger—A Journal of Comparative Zoology, 256, 96–103.

    https://doi.org/10.1016/j.jcz.2015.01.003

    Glastad, K.M., Hunt, B.G. & Goodisman, M.A. (2019) Epigenetics in insects: genome regulation and the generation of phenotypic diversity. Annual review of entomology, 64, 185–203.

    https://doi.org/10.1146/annurev-ento-011118-111914

    Grazia, J., Schuh, R.T. & Wheeler, W.C. (2008) Phylogenetic relationships of family groups in Pentatomoidea based on morphology and DNA sequences (Insecta: Heteroptera). Cladistics, 24 (6), 932–976.

    https://doi.org/10.1111/j.1096-0031.2008.00224.x

    Goloboff, P.A., Farris, J.S. & Nixon, K.C. (2008) TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.

    https://doi.org/10.1111/j.1096-0031.2008.00217.x

    Gross, G.F. (1976) Plant-feeding and other bugs (Hemiptera) of South Australia. Heteroptera—Part II. In: Ludbrook, N.H. (Ed.), Handbook of the flora and fauna of South Australia. Handbooks Committee of the South Australian Government, Adelaide, pp. 251–501.

    Hennig, W. (1950) Grundzüge einer Theorie der phylogenetischen Systematik. Deutsche Zentralverlag, Berlin, 370 pp.

    Hennig, W. (1966) Phylogenetic systematics. Translated by Davis, D.D. & Zangerl, R. University of Illinois Press, Urbana, 280 pp.

    Henry, T.J. (1997) Phylogenetic analysis of family groups within the infraorder Pentatomomorpha (Hemiptera: Heteroptera), with emphasis on the Lygaeoidea. Annals of the Entomological Society of America, 90 (3), 275–301.

    https://doi.org/10.1093/aesa/90.3.275

    Hosner, P.A., Braun, E.L. & Kimball, R.T. (2016) Rapid and recent diversification of curassows, guans, and chachalacas (Galliformes: Cracidae) out of Mesoamerica: Phylogeny inferred from mitochondrial, intron, and ultraconserved element sequences. Molecular Phylogenetics and Evolution, 102, 320–330.

    https://doi.org/10.1016/j.ympev.2016.06.006

    Hou, C., Wikström, N., Strijk, J.S. & Rydin, C. (2016) Resolving phylogenetic relationships and species delimitations in closely related gymnosperms using high-throughput NGS, Sanger sequencing and morphology. Plant Systematics and Evolution, 302 (9), 1345–1365.

    https://doi.org/10.1007/s00606-016-1335-1

    Jacobs, D.H. (1989) A new species of Thaumastella with notes on the morphology, biology and distribution of the two southern African species (Heteroptera, Thaumastellidae). Journal of the Entomological Society of South Africa, 52, 301–316.

    Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20 (4), 1160–1166.

    https://doi.org/10.1093/bib/bbx108

    Kheyri, H., Cribb, B.W. & Merritt, D.J. (2014) The comparative morphology of epidermal glands in Pentatomoidea (Heteroptera). Arthropod structure & development, 43 (3), 211–219.

    https://doi.org/10.1016/j.asd.2014.04.004

    Kment, P. & Vilimova, J. (2010a) Thoracic scent efferent system of Pentatomoidea (Hemiptera: Heteroptera): a review of terminology. Zootaxa, 2706 (1), 1–77.

    https://doi.org/10.11646/zootaxa.2706.1.1

    Kment, P. & Vilímová, J. (2010b) Thoracic scent efferent system of the Tessaratomidae sensu lato (Hemiptera: Heteroptera: Pentatomoidea) with implication to the phylogeny of the family. Zootaxa, 2363 (1), 1–59.

    https://doi.org/10.11646/zootaxa.2363.1.1

    Knyshov, A., Hoey-Chamberlain, R. & Weirauch, C. (2019) Hybrid enrichment of poorly preserved museum specimens refines homology hypotheses in a group of minute litter bugs (Hemiptera: Dipsocoromorpha: Schizopteridae). Systematic Entomology, 44 (4), 1–11.

    https://doi.org/10.1111/syen.12368

    Kriticos, D.J., Kean, J.M., Phillips, C.B., Senay, S.D., Acosta, H. & Haye, T. (2017) The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. Journal of Pest Science, 90 (4), 1033–1043.

    https://doi.org/10.1007/s10340-017-0869-5

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35 (6), 1547–1549.

    https://doi.org/10.1093/molbev/msy096

    Leston, D. (1958) Chromosome number and the systematics of Pentatomomorpha (Hemiptera). In: Proceedings of the Tenth International Congress of Entomology. Vol. 2. International Congress of Entomology, Montreal, pp. 911–918.

    Li, M., Xi, L., Fan, Z.H., Hua, J.M., Niu, C.J., Li, C.X. & Bu, W.J. (2010) Phylogeographic relationships of the southern green stink bug Nezara viridula (Hemiptera: Pentatomidae). Insect Science, 17 (5), 448–458.

    https://doi.org/10.1111/j.1744-7917.2010.01339.x

    Li, Z., Tiley, G.P., Galuska, S.R., Reardon, C.R., Kidder, T.I., Rundell, R.J. & Barker, M.S. (2018) Multiple large-scale gene and genome duplications during the evolution of hexapods. Proceedings of the National Academy of Sciences, 115 (18), 4713–4718.

    https://doi.org/10.1073/pnas.1710791115

    Lis, J.A. (1994) A revision of Oriental burrower bugs (Heteroptera: Cydnidae). Upper Silesian Museum, Department of Natural History, Bytom, 349 pp.

    Lis, J.A. & Lis, B. (2011) Is accurate taxon identification important for molecular studies? Several cases of faux pas in pentatomoid bugs (Hemiptera: Heteroptera: Pentatomoidea). Zootaxa, 2932, 47–50.

    https://doi.org/10.11646/zootaxa.2932.1.5

    Lis, J.A., Lis, B. & Ziaja, D.J. (2016) In BOLD we trust? A commentary on the reliability of specimen identification for DNA barcoding: A case study on burrower bugs (Hemiptera: Heteroptera: Cydnidae). Zootaxa, 4114 (1), 83–6.

    https://doi.org/10.11646/zootaxa.4114.1.6

    Lis, J.A., Lis, P., Ziaja, D.J. & Kocorek, A. (2012) Systematic position of Dinidoridae within the superfamily Pentatomoidea (Hemiptera, Heteroptera) revealed by the Bayesian phylogenetic analysis of the mitochondrial 12S and 16S rDNA sequences. Zootaxa, 3423 (1), 61–68.

    https://doi.org/10.11646/zootaxa.3423.1.5

    Lis, J.A., Ziaja, D.J., Lis, B. & Gradowska, P. (2017) Non-monophyly of the “cydnoid” complex within Pentatomoidea (Hemiptera: Heteroptera) revealed by Bayesian phylogenetic analysis of nuclear rDNA sequences. Arthropod Systematics & Phylogeny, 75, 481–496.

    Liu, Y., Li, H., Song, F., Zhao, Y., Wilson, J. & Cai, W. (2019) Higher-level phylogeny and evolutionary history of Pentatomomorpha (Hemiptera: Heteroptera) inferred from mitochondrial genome sequences. Systematic Entomology, 44 (4), 810–819.

    https://doi.org/10.1111/syen.12357

    Liu, L., Xi, Z., Wu, S., Davis, C. & Edwards, S.V. (2015) Estimating phylogenetic trees from genome-scale data. Annals of the New York Academy of Sciences, 1360 (1), 36–53.

    https://doi.org/10.1111/nyas.12747

    Maddison, W.P. (1997) Gene trees in species trees. Systematic Biology, 46 (6), 523–536.

    https://doi.org/10.1093/sysbio/46.3.523

    Matesco, V.C., Bianchi, F.M., Fürstenau, B.B.R.J., Da Silva, P.P., Campos, L.A. & Grazia, J. (2014) External egg structure of the Pentatomidae (Hemiptera: Heteroptera) and the search for characters with phylogenetic importance. Zootaxa, 3768 (3), 351–385.

    https://doi.org/10.11646/zootaxa.3768.3.5

    Matos-Maraví, P., Ritter, C.D., Barnes, C.J., Nielsen, M., Olsson, U., Wahlberg, N., Marquina, D., Sääksjärvi, I. & Antonelli, A. (2019) Biodiversity seen through the perspective of insects: 10 simple rules on methodological choices and experimental design for genomic studies. PeerJ, 7, e6727.

    https://doi.org/10.7717/peerj.6727

    McCormack, J.E., Hird, S.M., Zellmer, A.J., Carstens, B.C. & Brumfield, R.T. (2013) Applications of next-generation sequencing to phylogeography and phylogenetics. Molecular Phylogenetics and Evolution, 66, 526–538.

    https://doi.org/10.1016/j.ympev.2011.12.007

    Mabee, P.M., Ashburner, M., Cronk, Q., Gkoutos, G.V., Haendel, M., Segerdell, E., Mungall, C. & Westerfield, M. (2007) Phenotype ontologies: the bridge between genomics and evolution. Trends in ecology & evolution, 22 (7), 345–350.

    https://doi.org/10.1016/j.tree.2007.03.013

    Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, 19 June 2020, 1–8.

    https://doi.org/10.1109/GCE.2010.5676129

    de Moya, R.S., Weirauch, C., Sweet, A.D., Skinner, R.K., Walden, K.K., Swanson, D.R., Dietrich, C.H. & Johnson, K.P. (2019) Deep instability in the phylogenetic backbone of Heteroptera is only partly overcome by transcriptome-Based phylogenomics. Insect Systematics and Diversity, 3 (6), 1–14.

    https://doi.org/10.1093/isd/ixz020

    Nabhan, A.R. & Sarkar, I.N. (2012) The impact of taxon sampling on phylogenetic inference: a review of two decades of controversy. Briefings in bioinformatics, 13 (1), 122–134.

    https://doi.org/10.1093/bib/bbr014

    Patwardhan, A., Ray, S. & Roy, A. (2014) Molecular markers in phylogenetic studies-a review. Journal of Phylogenetics & Evolutionary Biology, 2 (2), 9.

    https://doi.org/10.4172/2329-9002.1000131

    Panizzi, A.R. (2015) Growing problems with stink bugs (Hemiptera: Heteroptera: Pentatomidae): species invasive to the U.S. and potential Neotropical invaders. American Entomologist, 61 (4), 223–233.

    https://doi.org/10.1093/ae/tmv068

    Philippe, H. & Roure, B. (2011) Difficult phylogenetic questions: more data, maybe; better methods, certainly. BMC biology, 9 (1), 91.

    https://doi.org/10.1186/1741-7007-9-91

    Pluot-Sigwalt, D. & Lis, J.A. (2008) Morphology of the spermatheca in the Cydnidae (Hemiptera, Heteroptera): bearing of its diversity on classification and phylogeny. European Journal of Entomology, 105, 279–312.

    https://doi.org/10.14411/eje.2008.038

    Pyron, R.A. (2015) Post-molecular systematics and the future of phylogenetics. Trends in Ecology & Evolution, 30 (7), 384–389.

    https://doi.org/10.1016/j.tree.2015.04.016

    Rabosky, D.L. (2015) No substitute for real data: A cautionary note on the use of phylogenies from birth-death polytomy resolvers for downstream comparative analyses. Evolution, 69 (12), 3207–3216.

    https://doi.org/10.1111/evo.12817

    Rambaut, A. (2014) FigTree 1.4.0, a graphical viewer of phylogenetic trees. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 23 November 2020)

    Rédei, D. (2016) The identity of the Brachyplatys species recently introduced to Panama, with a review of bionomics (Hemiptera: Heteroptera: Plataspidae). Zootaxa, 4136 (1), 141–154.

    https://doi.org/10.11646/zootaxa.4136.1.6

    Rider, D.A., Schwertner, C.F., Vilímová, J., Rédei, D., Kment, P. & Thomas, D.B. (2018) Higher systematics of the Pentatomoidea. In: McPherson, J.E. (Ed.), Invasive Stink Bugs and Related Species (Pentatomoidea): Biology, Higher Systematics, Semiochemistry, and Management. CRC Press, Boca Raton, California, pp. 25–201.

    https://doi.org/10.1201/9781315371221-2

    Riesch, R., Muschick, M., Lindtke, D., Villoutreix, R., Comeault, A.A., Farkas, T.E., Lucek, K., Hellen, E., Soria-Carrasco, V., Dennis, S.R., Carvalho, C.F., Safran, R.J., Sandoval, C.P., Feder, J., Gries, R., Crespi, B.J., Gries, G., Gompert, Z. & Nosil, P. (2017) Transitions between phases of genomic differentiation during stick-insect speciation. Nature ecology & evolution, 1 (4), 1–13.

    https://doi.org/10.1038/s41559-017-0082

    Roell, T., Bianchi, F.M., Kochenborger, A.P.L. & Campos, L.A. (2020a) External morphology of the abdominal glands in Asopinae (Hemiptera: Heteroptera: Pentatomidae). Arthropod Structure & Development, 57, 100946.

    https://doi.org/10.1016/j.asd.2020.100946

    Roell, T., Genevcius, B.C. & Campos, L.A. (2020b) Comparative morphology of clasping structures in predator stink bugs (Hemiptera: Pentatomidae: Asopinae): Insights into their function and evolution. Arthropod Structure & Development, 57, 100949.

    https://doi.org/10.1016/j.asd.2020.100949

    Roff, D.A. (1986) The evolution of wing dimorphism in insects. Evolution, 40 (5), 1009–1020.

    https://doi.org/10.2307/2408759

    Rubinoff, D. & Holland, B.R. (2005) Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Systematic Biology, 54 (6), 952–961.

    http://doi.org/10.1080/10635150500234674

    Schaefer, C.W. (1975) Heteropteran trichobothria (Hemiptera: Heteroptera). International Journal of Insect Morphology and Embryology, 4, 193–264.

    https://doi.org/10.1016/0020-7322(75)90034-3

    Schaefer, C.W., Dolling, W.R. & Tachikawa, S. (1988) The shieldbug genus Parastrachia and its position within the Pentatomoidea (Insecta: Hemiptera). Zoological Journal of the Linnean Society, 93, 283–311.

    https://doi.org/10.1111/j.1096-3642.1988.tb01365.x

    Schaefer, C.W. (1993) The Pentatomomorpha (Hemiptera: Heteroptera): an annotated outline of its systematic history. European Journal of Entomology, 90, 105–122.

    Schaefer, C.W. (1968) The homologies of the female genitalia in the Pentatomoidea (Hemiptera-Heteroptera). Journal of the New York Entomological Society,1968, 87–91.

    Schuh, R. & Weirauch, C. (2020) True Bugs of the World (Hemiptera: Heteroptera): Classification and Natural History. 2nd Edition. Siri Scientific, Castleton, 800 pp.

    Schuh, R.T. & Slater, J.A. (1995) True bugs of the world (Hemiptera: Heteroptera): classification and natural history. Cornell University Press, Ithaca, New York, 336 pp.

    Scotland, R.W., Olmstead, R.G. & Bennett, J.R. (2003) Phylogeny reconstruction: the role of morphology. Systematic Biology, 52, 539–548.

    http://doi.org/10.1080/10635150390223613

    Short, A.E.Z., Dikow, T. & Moreau, C.S. (2018) Entomological collections in the age of big data. Annual Review of Entomology, 63, 513–530.

    https://doi.org/10.1146/annurev-ento-031616-035536

    Sinclair, D.P. (1989) A cladistic, generic revision of the Oncomeridae Stål n. stat. and Tessaratomidae Schilling n. stat. (Hemiptera: Heteroptera: Pentatomoidea). Ph.D. dissertation, University of Sydney, Sydney, 324 pp. [unpublished, Not seen, fide Schaefer (1993), Grazia et al. (2008)].

    Singh-Pruthi, H. (1925) The morphology of the male genitalia in Rhynchota. Transactions of the Royal Entomological Society, London, 1925, 127–267.

    https://doi.org/10.1111/j.1365-2311.1925.tb02861.x

    Soares, P.L., Cordeiro, E.M.G., Santos, F.N.S., Omoto, C. & Correa, A.S. (2018) The reunion of two lineages of the Neotropical brown stink bug on soybean lands in the heart of Brazil. Scientific Reports, 8 (2496), 1–12.

    https://doi.org/10.1038/s41598-018-20187-6

    Smith, N.D. & Turner, A.H. (2005) Morphology’s role in phylogeny reconstruction: perspective from paleontology. Systematic Biology, 54, 166–173.

    https://doi.org/10.1080/10635150590906000

    Straub, S.C., Parks, M., Weitemier, K., Fishbein, M., Cronn, R.C. & Liston, A. (2012) Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. American Journal of Botany, 99 (2), 349–364.

    https://doi.org/10.3732/ajb.1100335

    Štys, P. (1964) Thaumastellidae—a new family of Pentatomoid Hemiptera. Acta Societatis Entomologicae Cechoslovaquiae, 61, 236–253.

    Tian, X., Xie, Q., Li, M., Gao, C., Cui, Y., Xi, L. & Bu, W. (2011) Phylogeny of pentatomomorphan bugs (Hemiptera-Heteroptera: Pentatomomorpha) based on six Hox gene fragments. Zootaxa, 2888 (1), 57–68.

    https://doi.org/10.11646/zootaxa.2888.1.5

    Tsai, J., Rédei, D., Yeh, G. & Yang, M. (2011) Jewel bugs of Taiwan (Heteroptera: Scutelleridae). National Chung Hsing University, Taichung, 309 pp.

    Tsai, J., Kudo, S. & Yoshizawa, K. (2015) Maternal care in Acanthosomatinae (Insecta: Heteroptera: Acanthosomatidae)—correlated evolution with morphological change. BMC Evolutionary Biology, 15 (258), 1–13.

    https://doi.org/10.1186/s12862-015-0537-4

    Turney, S., Cameron, E.R., Cloutier, C.A. & Buddle, C.M. (2015) Non-repeatable science: assessing the frequency of voucher specimen deposition reveals that most arthropod research cannot be verified. PeerJ, 3, e1168.

    https://doi.org/10.7717/peerj.1168

    Vogt, L., Bartolomeus, T. & Giribet, G. (2010) The linguistic problem of morphology: structure versus homology and the standardization of morphological data. Cladistics, 26, 301–325.

    https://doi.org/10.1111/j.1096-0031.2009.00286.x

    Xie, Q., Bu, W. & Zheng, L. (2005) The Bayesian phylogenetic analysis of the 18S rRNA sequences from the main lineages of Trichophora (Insecta: Heteroptera: Pentatomomorpha). Molecular Phylogenetics and Evolution, 34, 448–451.

    https://doi.org/10.1016/j.ympev.2004.10.015

    Wanninger, A. (2015) Morphology is dead—long live morphology! Integrating MorphoEvoDevo into molecular EvoDevo and phylogenomics. Frontiers in Ecology and Evolution, 3, 54.

    https://doi.org/10.3389/fevo.2015.00054

    Weiler, L., Barão, K.R., Cassis, G. & Grazia, J. (2017) Morphology of the external scent efferent system of Neotropical shield bugs (Hemiptera: Scutelleridae: Pachycorinae). Zoomorphology, 136 (1), 29–44.

    https://doi.org/10.1007/s00435-016-0330-y

    Weirauch, C., Schuh, R.T., Cassis, G. & Wheeler, W.C. (2019) Revisiting habitat and lifestyle transitions in Heteroptera (Insecta: Hemiptera): insights from a combined morphological and molecular phylogeny. Cladistics, 35 (1), 67–105.

    https://doi.org/10.1111/cla.12233

    Weirauch, C. & Schuh, R.T. (2011) Systematics and evolution of Heteroptera: 25 years of progress. Annual Review of Entomology, 56, 487–510.

    https://doi.org/10.1146/annurev-ento-120709-144833

    Wiens, J.J. (2004) The role of morphological data in phylogeny reconstruction. Systematic Biology, 53, 653–661.

    https://doi.org/10.1080/10635150490472959

    Wheeler, W.C. (2003) Search-Based Optimization. Cladistics, 19 (4), 348–355.

    https://doi.org/10.1111/j.1096-0031.2003.tb00378.x

    Wheeler, W.C., Schuh, R.T. & Bang, R. (1993) Cladistic relationships among higher groups of Heteroptera: congruence between morphological and molecular datasets. Entomologica Scandinavia, 24 (2), 121–137.

    https://doi.org/10.1163/187631293X00235

    Wipfler, B., Pohl, H., Yavorskaya, M.I. & Beutel, R.G. (2016) A review of methods for analysing insect structures—the role of morphology in the age of phylogenomics. Current opinion in insect science, 18, 60–68.

    https://doi.org/10.1016/j.cois.2016.09.004

    Wu, Y.Z., Rédei, D., Eger , J.E. Jr., Wang, Y.H., Wua, H.Y., Carapezza, A., Kment, P., Caig, B., Suna, Y.X., Guo, P.L., Luo, J.Y. & Xie, Q. (2017) Phylogeny and the colourful history of jewel bugs (Insecta: Hemiptera: Scutelleridae). Cladistics, 34 (5), 502–516.

    https://doi.org/10.1111/cla.12224

    Wu, Y.Z., Yu, S.S, Wang, Y.H., Wu, Y.H., Li X,R,. Men, X.Y., Zhang, Y.W., Rédei, D., Xie, Q. & Bu, W.J. (2016) The evolutionary position of Lestoniidae revealed by molecular autapomorphies in the secondary structure of rRNA besides phylogenetic reconstruction (Insecta: Hemiptera: Heteroptera). Zoological Journal of the Linnean Society, 177 (4), 750–763.

    https://doi.org/10.1111/zoj.12385

    Yu, S., Wang, Y., Rédei, D., Xie, Q. & Bu, W. (2013) Secondary structure models of 18S and 28S rRNAs of the true bugs based on complete rDNA sequences of Eurydema maracandica Oshanin, 1871 (Heteroptera, Pentatomidae). ZooKeys, 319, 363–377.

    https://doi.org/10.3897/zookeys.319.4178

    Yoder, M.J., Mikó, I., Seltmann, K.C., Bertone, M.A. & Deans, A.R. (2010) A gross anatomy ontology for Hymenoptera. PLoS ONE, 5 (12), e15991.

    https://doi.org/10.1371/journal.pone.0015991

    Yao, Y., Ren, D., Rider, D.A. & Cai, W. (2012) Phylogeny of the infraorder Pentatomomorpha based on fossil and extant morphology, with description of a new fossil family from China. PloS ONE, 7 (5), e37289.

    https://doi.org/10.1371/journal.pone.0037289

    Yuan, M., Zhang, Q., Guo, Z., Wang, J. & Shen, Y. (2015) Comparative mitogenomic analysis of the superfamily Pentatomoidea (Insecta: Hemiptera: Heteroptera) and phylogenetic implications. BMC genomics, 16, 460.

    https://doi.org/10.1186/s12864-015-1679-x

    Zhou, Y. & Rédei, D. (2020) From lanceolate to plate-like: Gross morphology, terminology, and evolutionary trends of the trichophoran ovipositor. Arthropod Structure & Development, 54, 100914.

    https://doi.org/10.1016/j.asd.2020.100914

    Zhao, Q., Wang, J., Wang, M., Cai, B., Zhang, H. & Wei, J. (2018) Complete mitochondrial genome of Dinorhynchus dybowskyi (Hemiptera: Pentatomidae: Asopinae) and phylogenetic analysis of Pentatomomorpha species. Journal of Insect Science, 18 (2), 44.

    https://doi.org/10.1093/jisesa/iey031

    Zhang, D., Gao, F., Jakovlić, I., Zou, H., Zhang, J., Li, W.X. & Wang, G.T. (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular ecology resources, 20 (1), 348–355.

    https://doi.org/10.1111/1755-0998.13096