Abstract
Sponges (phylum Porifera) are common inhabitants of kelp forest ecosystems in California, but their diversity and ecological importance are poorly characterized in this biome. Here I use freshly collected samples to describe the diversity of the order Scopalinida in California. Though previously unknown in the region, four new species are described here: Scopalina nausicae sp. nov., S. kuyamu sp. nov., S. goletensis sp. nov., and S. jali sp. nov.. These discoveries illustrate the considerable uncharacterized sponge diversity remaining in California kelp forests, and the utility of SCUBA-based collection to improve our understanding of this diversity.
References
Avilés, E., Rodríguez, A.D. & Vicente, J. (2013) Two rare-class tricyclic diterpenes with antitubercular activity from the Caribbean sponge Svenzea flava. Application of vibrational circular dichroism spectroscopy for determining absolute configuration. Journal of Organic Chemistry, 78, 11294–11301.
https://doi.org/10.1021/jo401846m
Bakus, G.J. & Green, K.D. (1987) The distribution of marine sponges collected from the 1976-1978 Bureau of Land Management Southern California Bight program. Bulletin of the Southern California Academy of Sciences, 86, 57–88.
Bibiloni, M.A. (1993) Some new or poorly known sponges of the Balearic Islands (Western Mediterranean). Scientia Marina, 57, 307–318.
Blanchette, C., Miner, C., Raimondi, P., Lohse, D., Heady, K. & Broitman, B. (2008) Biogeographical patterns of rocky intertidal communities along the Pacific coast of North America. Journal of Biogeography, 35, 1593–1607.
https://doi.org/10.1111/j.1365-2699.2008.01913.x
Blanquer, A. & Uriz, M.-J. (2008) “A posteriori” searching for phenotypic characters to described new cryptic species of sponges revealed by molecular markers (Scopalina: Dictyonellidae). Invertebrate Systematics, 22, 489–502.
https://doi.org/10.1071/IS07004
Caselle, J.E., Davis, K. & Marks, L.M. (2018) Marine management affects the invasion success of a non-native species in a temperate reef system in California, USA. Ecology Letters, 21, 43–53.
https://doi.org/10.1111/ele.12869
Castorini, M.C.N., Reed, D.C. & Miller, R.J. (2018) Loss of foundation species: disturbance frequency outweighs severity in structuring kelp forest communities. Ecology, 99, 2442–2454.
https://doi.org/10.1002/ecy.2485
Carballo, J., Cruz-Barraza, J., Vega, C., Nava, H. & Chávez-Fuentes, M. (2019) Sponge diversity in Eastern Tropical Pacific coral reefs: an interoceanic comparison. Scientific Reports, 9, 9409.
https://doi.org/10.1038/s41598-019-45834-4
Chombard, C., Boury-Esnault, N. & Tillier, S. (1998) Reassessment of homology of morphological characters in tetractinellid sponges based on molecular data. Systematic Biology, 47, 351–366.
https://doi.org/10.1080/106351598260761
Eger, A.M., Marzinelli, E., Gribben, P., Johnson, C.R., Layton, C., Steinberg, P.D., Wood, G., Silliman, B.R. & Vergés, A. (2020) Playing to the positives: Using synergies to enhance kelp forest restoration. Frontiers in Marine Science, 7, 544.
https://doi.org/10.3389/fmars.2020.00544
Erpenbeck, D., Breeuwer, J., van der Velde, H. & van Soest, R. (2002) Unravelling host and symbiont phylogenies of halichondrid sponges (Demospongiae, Porifera) using a mitochondrial marker. Marine Biology, 141, 377–386.
https://doi.org/10.1007/s00227-002-0785-x
Erpenbeck, D., Breeuwer, J.A.J., Parra-Velandia, F.J. & van Soest, R.W.M. (2006) Speculation with spiculation?—Three independent gene fragments and biochemical characters versus morphology in demosponge higher classification. Molecular Phylogenetics and Evolution, 38, 293–305.
https://doi.org/10.1016/j.ympev.2005.11.001
Erpenbeck, D., Duran, S., Rützler, K., Paul, V., Hooper, J. & Wörheide, G. (2007a) Towards a DNA taxonomy of Caribbean demosponges: a gene tree reconstructed from partial mitochondrial CO1 gene sequences supports previous rDNA phylogenies and provides a new perspective on the systematics of Demospongiae. Journal of the Marine Biological Association of the United Kingdom, 87, 1563–1570.
https://doi.org/10.1017/S0025315407058195
Erpenbeck, D., Hall, K., Alvarez, B., Büttner, G., Sacher, K., Schätzle, S., Schuster, A., Vargas, S., Hooper, J. & Wörheide, G. (2012) The phylogeny of halichondrid demosponges: past and present re-visited with DNA-barcoding data. Organisms Diversity & Evolution, 12, 57–70.
https://doi.org/10.1007/s13127-011-0068-9
Erpenbeck, D., List-Armitage, S., Alvarez, B., Degnan, B., Wörheide, G. & Hooper, J. (2007b) The systematics of Raspailiidae (Demospongiae: Poecilosclerida: Microcionina) re-analysed with a ribosomal marker. Journal of the Marine Biological Association of the United Kingdom, 87, 1571–1576.
https://doi.org/10.1017/S0025315407058201
Erpenbeck, D., Voigt, O., Al-Aidaroos, A., Berumen, M., Büttner, G., Catania, D., Guirguis, A., Paulay, G., Schätzle, S. & Wörheide, G. (2016) Molecular biodiversity of Red Sea demosponges. Marine Pollution Bulletin, 105, 507–514.
https://doi.org/10.1016/j.marpolbul.2015.12.004
Goodwin, C., Jones, J., Neely, K. & Brickle, P. (2011) Sponge biodiversity of the Jason Islands and Stanley, Falkland Islands with descriptions of twelve new species. Journal of the Marine Biological Association of the United Kingdom, 91, 275–301.
https://doi.org/10.1017/S0025315410001542
Goodwin, C.E. & Picton, B.E. (2009) Demosponges of the genus Hymedesmia (Poecilosclerida: Hymedesmidae) from Rathlin Island, Northern Ireland, with a description of six new species. Zoological Journal of the Linnean Society, 156, 896–912.
https://doi.org/10.1111/j.1096-3642.2008.00498.x
Green, K.D. & Bakus, G.J. (1994) Taxonomic atlas of the benthic marine fauna of the Western Santa Maria Basin and the Western Santa Barbara Channel. Vol. 2. The Porifera. The Santa Barbara Museum of Natural History, Santa Barbara, California, 82 pp.
Hechtel, G.J. (1965) A systematic study of the Demospongiae of Port Royal, Jamaica. Bulletin of the Peabody Museum of Natural History, 20, 1–103.
Hoang, D., Chernomor, O., von Haeseler, A., Minh, B. & Vinh, L. (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522.
https://doi.org/10.1093/molbev/msx281
Huang, D., Meier, R., Todd, P.A. & Chou, L.M. (2008) Slow mitochondrial COI sequence evolution at the base of the Metazoan tree and its implications for DNA barcoding. Journal of Molecular Evolution, 66, 167–174.
https://doi.org/10.1007/s00239-008-9069-5
Kandler, N., Wooster, M., Leray, M., Knowlton, N., de Voogd, N., Paulay, G. & Berumen, M. (2019) Hyperdiverse macrofauna communities associated with a common sponge, Stylissa carteri, shift across ecological gradients in the Central Red Sea. Diversity, 11, 18.
https://doi.org/10.3390/d11020018
de Laubenfels, M.W. (1932) The marine and fresh-water sponges of California. Proceedings of the United States National Museum, 81, 1–140.
https://doi.org/10.5479/si.00963801.81-2927.1
de Laubenfels, M.W. (1954) The sponges of the West-Central Pacific. Oregon State College, Corvallis, Oregon, 320 pp.
https://doi.org/10.5962/bhl.title.6516
Lavrov, D., Forget, L., Kelly, M. & Lang, B. (2005) Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Molecular Biology and Evolution, 22, 1231–1239.
https://doi.org/10.1093/molbev/msi108
Lavrov, D. & Lang, B. (2005) Transfer RNA gene recruitment in mitochondrial DNA. Trends in Genetics, 21, 129–133.
https://doi.org/10.1016/j.tig.2005.01.004
Lee, W., Elvin, D. & Reiswig, H. (2007) The sponges of California: A guide and key to the marine sponges of California. Monterey Bay Sanctuary Foundation, Monterey, California, 395 pp.
Letunic, I. & Bork, P. (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Research, 47, W256–W259.
https://doi.org/10.1093/nar/gkz239
Miller, R.J., Lafferty, K.D., Lamy, T., Kui, L., Rassweiler, A. & Reed, D.C. (2018) Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proceedings of the Royal Society B, 285, 20172571.
https://doi.org/10.1098/rspb.2017.2571
Montalvo, N. & Hill, R. (2011) Applied Environmental Microbiology, 77, 7207–7216.
https://doi.org/10.1128/AEM.05285-11
Morrow, C. & Cárdenas, P. (2015) Proposal for a revised classification of the Demospongiae (Porifera). Frontiers in Zoology, 12, 1–27.
https://doi.org/10.1186/s12983-015-0099-8
Morrow, C.C., Picton, B.E., Erpenbeck, D., Boury-Esnault, N., Maggs, C.A. & Allcock, A.L. (2012) Congruence between nuclear and mitochondrial genes in Demospongiae: A new hypothesis for relationships within the G4 clade (Porifera: Demospongiae). Molecular Phylogenetics and Evolution, 62, 174–190.
https://doi.org/10.1016/j.ympev.2011.09.016
Morrow, C.C., Redmond, N.E., Picton, B.E., Thacker, R.W., Collins, A.G., Maggs, C.A., Sigwart, J.D. & Allcock, A.L. (2013) Molecular phylogenies support homoplasy of multiple morphological characters used in the taxonomy of Heteroscleromorpha (Porifera: Demospongiae). Integrative and Comparative Biology, 53, 428–446.
https://doi.org/10.1093/icb/ict065
Nguyen, L.-T., Schmidt, H., von Haeseler, A. & Minh, B. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274.
https://doi.org/10.1093/molbev/msu300
Nichols, S. (2005) An evaluation of support for order-level monophyly and interrelationships within the class Demospongiae using partial data from the large subunit rDNA and cytochrome oxidase subunit I. Molecular Phylogenetics and Evolution, 34, 81–96.
https://doi.org/10.1016/j.ympev.2004.08.019
Pett, W. & Lavrov, D. (2015) Cytonuclear interactions in the evolution of animal mitochondrial tRNA metabolism. Genome Biology and Evolution, 7, 2089–2101.
https://doi.org/10.1093/gbe/evv124
Pulitzer-Finali, G. (1982) Some new or little-known sponges from the Great Barrier Reef of Australia. Bollettino dei Musei e degli Istituti Biologici dell’Universitá di Genova, 48–49, 87–141.
Reed, D., Washburn, L., Rassweiler, A., Miller, R., Bell, T. & Harrer, S. (2016) Extreme warming challenges sentinel status of kelp forests as indicators of climate change. Nature Communications, 7, 13757.
https://doi.org/10.1038/ncomms13757
Riesgo, A., Novo, M., Sharma, P., Peterson, M., Maldonado, M. & Giribet, G. (2013) Inferring the ancestral sexuality and reproductive condition in sponges (Porifera). Zoologica Scripta, 43, 101–117.
https://doi.org/10.1111/zsc.12031
Rot, C., Goldfarb, I., Ilan, M. & Huchon, D. (2006) Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evolutionary Biology, 6, 1–11.
https://doi.org/10.1186/1471-2148-6-71
Rützler, K., van Soest, R., & Alvarez, B. (2003) Svenzea zeai, a Carribean reef sponge with giant larva, and Scopalina ruetzleri: a comparative fine-structural appraoch to classification (Demospongiae, Halichondrida, Dicyonellidae. Invertebrate Biology, 122, 203–222.
https://doi.org/10.1111/j.1744-7410.2003.tb00085.x
Schmidt, O. (1862) Die Spongien des adriatischen Meeres. Wilhelm Engelmann, Leipzig, 88 pp.
Schneider, C., Rasband, W. & Eliceiri, K. (2012) NIH Image to ImageJ: 25 years of image analysis. Natue Methods, 9, 671–675.
https://doi.org/10.1038/nmeth.2089
Sim, C.J. & Bakus, G.J. (1986) Marine sponges of Santa Catalina Island, California. Occasional Papers of the Allan Hancock Foundation, 5, 1–23.
van Soest, R.W.M., Boury-Esnault, N., Hooper, J.N.A., Rützler, K., de Voogd, N.J., Alvarez, B., Hajdu, E., Pisera, A.B., Manconi, R., Schönberg, C., Klautau, M., Kelly, M., Vacelet, J., Dohrmann, M., Díaz, M.-C., Cárdenas, P., Carballo, J.L., Ríos, P., Downey, R. & Morrow, C.C. (2019) World Porifera Database. Available from: http://www.marinespecies.org/porifera (accessed 1 September 2019)
Thacker, R., Hill, A., Hill, M., Redmond, N., Collins, A., Morrow, C., Spicer, L., Carmack, C., Zappe, M., Pohlmann, D., Hall, C., Diaz, M. & Bangalore, P. (2013) Nearly complete 28S rRNA gene sequences confirm new hypotheses of sponge evolution. Integrative and Comparative Biology, 53, 373–387.
https://doi.org/10.1093/icb/ict071
Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44, W232–W235.
https://doi.org/10.1093/nar/gkw256
Turner, T.L. (2020a) The marine sponge Hymeniacidon perlevis is a globally-distributed invasive species. Aquatic Invasions, 15, 542–561.
https://doi.org/10.3391/ai.2020.15.4.01
Turner, T.L. (2020b) The order Tethyida (Porifera) in California: taxonomy, systematics, and the first member of the family Hemiasterellidae in the Eastern Pacific. Zootaxa, 4861 (2), 211–231.
https://doi.org/10.11646/zootaxa.4861.2.3
Valentine, J. (1966) Numerical analysis of marine molluscan ranges on extratropical northeastern Pacific shelf. Limnology and Oceanography, 11, 198–211.
https://doi.org/10.4319/lo.1966.11.2.0198
Vicente, J., Stewart, A.K., van Wagoner, R.M., Elliott, E., Bourdelais, A.J. & Wright, J.L.C. (2015) Monacyclinones, new angucyclinone metabolites isolated from Streptomyces sp. M7_15 associated with the Puerto Rican sponge Scopalina ruetzleri. Marine Drugs, 13, 4682–4700.
https://doi.org/10.3390/md13084682
Wei, X., Rodríguez, A.D., Wang, Y. & Franzblau, S.G. (2007) Novel ring B abeo-sterols as growth inhibitors of Mycobacterium tuberculosis isolated from a Caribbean Sea sponge, Svenzea zeai. Tetrahedron Letters, 48, 8851–8854.
https://doi.org/10.1016/j.tetlet.2007.10.070
Wiedenmayer, F. (1977) Shallow-water sponges of the western Bahamas. Experientia Supplementum, 28, 1–287.
https://doi.org/10.1007/978-3-0348-5797-0