Abstract
The tribe Junoniini is a predominantly Paleotropical group of the cosmopolitan butterfly subfamily Nymphalinae (Nymphalidae), with highest diversity in the Afrotropical region. Its systematics and relationships are not entirely resolved. Question marks remain concerning the validity of some genera; and the apparently close relationship between the Indo-Australian genus Yoma and the Afrotropical Protogoniomorpha, as evidenced by molecular phylogenies, remains a puzzle. Here, we present a cladistic analysis, based on 42 characters of the male and female genitalia of 41 species of Junoniini belonging to six genera, nearly all of them continental Afrotropical, and 3 species of two Indo-Australian genera Yoma and Rhinopalpa. A ML COI-based tree is produced for 36 species of Afrotropical Junoniini and Yoma. The molecular data are consistent with previous studies. However, morphological analysis does not confirm a close relationship between Protogoniomorpha and Yoma. Despite the evolution of a number of modifications, the male genitalia within all genera and species of the Junoniini share a cohesive build plan, in particular a transformed sacculus, from which Yoma is highly divergent. The position of the genus Kamilla, previously synonymized with Junonia, is discussed. Three East African coast taxa, Junonia elgiva stat. reinst., Protogoniomorpha nebulosa stat. reinst. and Salamis amaniensis stat. reinst., and one from central Africa, Precis silvicola stat. reinst. are raised to species level, based on comparative analysis of their male genitalia.
References
Ackery, P.R., Smith, C.R. & Vane-Wright, R.I. (1995) Carcasson’s African butterflies: an annotated catalogue of Papilionoidea and Hesperioidea of the Afrotropical Region. CSIRO Publishing, Melbourne, 803 pp. https://doi.org/10.1071/9780643100787
Bennik, R.M., Buckley, T.R., Hoare, R.J.B. & Holwell, G.I. (2015) Molecular phylogeny reveals the repeated evolution of complex male genital traits in the New Zealand moth genus Izatha (Lepidoptera: Xyloryctidae). Systematic Entomology, 41, 309–322. https://doi.org/10.1111/syen.12155
Beutel, R.G., Pohl, H., Yan, E.V., Anton, E., Liu, S.P., Ślipiński, A. & Friedrich, F. (2019) The phylogeny of Coleopterida (Hexapoda)—morphological characters and molecular phylogenies. Systematic Entomology, 44 (1), 75–102. https://doi.org/10.1111/syen.12316
Bremer, K. (1994) Branch support and tree stability. Cladistics, 10, 295–304. https://doi.org/10.1111/j.1096-0031.1994.tb00179.x
Brown, J.W., Parins-Fukuchi, C., Stull, G.W., Vargas, O.M. & Smith, S. (2017) Bayesian and likelihood phylogenetic reconstructions of morphological traits are not discordant when taking uncertainty into consideration: a comment on Puttick et al. Proceedings of the Royal Society B, 284, 20170986. https://doi.org/10.1098/rspb.2017.0986
Bruvo-Madarić, B. (2009) Molecular phylogenetic methods in entomology—new insights on the evolutionary relationships of hexapods and arthropods. Entomologica Croatica, 13 (2), 69–84.
Cobbett, A., Wilkinson, M. & Wills, M.A. (2007) Fossils impact as hard as living taxa in parsimony analyses of morphology. Systematic Biology, 56, 753–766. https://doi.org/10.1080/10635150701627296
Dana, J., Svenson, G.J., Song, H. & Whiting, M.F. (2009) A Phylogeny and evolution of male genitalia within the praying mantis genus Tenodera (Mantodea: Mantidae). Invertebrate Systematics, 23, 409–421. https://doi.org/10.1071/IS09004
Dickson, C.G.C. & Kroon, D.M. (1978) Pennington’s Butterflies of Southern Africa. Ad. Donker Publ., Johannesburg and London, 670 pp.
Douady, C.J., Catzeflis, F., Raman, J., Springer, M.S. & Stanhope, M.J. (2003) The Sahara as a vicariant agent, and the role of Miocene climatic events, in the diversification of the mammalian order Macroscelidea (elephant shrews). Proceedings of the National Academy of Sciences USA, 100, 8325–8330. https://doi.org/10.1073/pnas.0832467100
Espeland, M., Breinholt, J., Willmott, K.R., Warren, A.D., Vila, R., Toussaint, E.F.A., Maunsell, S.C., Aduse-Poku, K., Talavera, G., Eastwood, R., Jarzyna, M.A., Guralnick, R., Lohman, D.J., Pierce, N.E. & Kawahara, A.Y. (2018) A Comprehensive and Dated Phylogenomic Analysis of Butterflies. Current Biology, 28, 1–9. https://doi.org/10.1016/j.cub.2018.01.061
Felsenstein, J. (1985) Confidence limits on phylogenies, an approach using the bootstrap. Evolution, 39, 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Folmer, O., Black, M., Hoeh, W., Lutz, R.A. & Vrijenhoek, R.C. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3 (5), 294–299.
Fujisawa, T., Sasabe, M., Nagata, N., Takami, Y. & Sota, T. (2019) Genetic basis of species-specific genitalia reveals role in species diversification. Science Advances, 5, eaav9939. https://doi.org/10.1126/sciadv.aav9939
Gemmell, A.P., Borchers, T.E. & Marcus, J.M. (2014) Molecular population structure of Junonia butterflies from French Guiana, Guadeloupe, and Martinique. A Journal of Entomology, 2014, 1–21. https://doi.org/10.1155/2014/897596
Goloboff, P.A. & Catalano, S.A. (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics, 32, 221–238. https://doi.org/10.1111/cla.12160
Goloboff, P.A., Farris, J.S. & Nixon, K.C. (2008) TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786. https://doi.org/10.1111/j.1096-0031.2008.00217.x
Goloboff, P.A., Pittman, M., Pol, D. & Xu, X. (2018b) Morphological Data Sets Fit a Common Mechanism Much More Poorly than DNA Sequences and Call into Question the Mkv Model. Systematic Biology, 68, 494–504. https://doi.org/10.1093/sysbio/syy077
Goloboff, P.A., Torres, A. & Arias, J.S. (2018a) Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics, 34, 407–437. https://doi.org/10.1111/cla.12205
Hall, B.G. (2008) Phylogentic Trees Made easy: A How-To Manual. 3rd Edition. Sinauer Associates Inc., Sunderland, Massachusetts, xvi + 233 pp.
Henning, G.A. & Jannou, J.G. (1994) A new subspecies of Salamis cacta (Fabricius) (Lepidoptera: Nymphalidae) from South Africa. In: Pringle, E.L.L. (Ed.), Pennington’s Butterflies od southern Africa. 2nd Edition. Struik Publishers (Pty) Ltd, Cape Town, pp. 177–119.
Jukes, T.H. & Cantor, C.R. (1969) Evolution of protein molecules. In: Mammalian protein metabolism. Academic Press, New York, pp. 21–132. https://doi.org/10.1016/B978-1-4832-3211-9.50009-7
Kjer, K.M., Simon, C., Yavorskaya, M. & Beutel, R.G. (2016) Progress, pitfalls and parallel universes: a history of insect phylogenetics. Journal of the Royal Society Interface, 13, 20160363. https://doi.org/10.1098/rsif.2016.0363
Klots, A.B. (1956) Lepidoptera. In: Tuxen, S.L. (Ed.), Taxonomist’s glossary of genitalia in insects. Ejnar Munksgaard, Copenhagen, pp. 97–11.
Koch, N.M. & Parry, L.A. (2020) Death is on Our Side: Paleontological Data Drastically Modify Phylogenetic Hypotheses. Systematic Biology, 69 (6), 1052–1067. https://doi.org/10.1093/sysbio/syaa023
Kodandaramaiah, U. & Wahlberg, N. (2007) Out-of-Africa origin and dispersal-mediated diversification of the butterfly genus Junonia (Nymphalidae: Nymphalinae). Journal of Evolutionary Biology, 20, 2181–2191. https://doi.org/10.1111/j.1420-9101.2007.01425.x
Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. https://doi.org/10.1093/molbev/msw054
Lalonde, M. & Marcus, J.M. (2018) The complete mitochondrial genome of the Madagascar mother-of-pearl butterfly Salamis anteva (Insecta: Lepidoptera: Nymphalidae). Mitochondrial DNA, Part B, 4 (1), 296–298. https://doi.org/10.1080/23802359.2018.1542989
Lambkin, T.A. & Kendall, R. (2016) The status of Yoma algina (Boisduval, 1832) and Y. sabina (Cramer, 1780) (Lepidoptera: Nymphalidae: Nymphalinae) in Australia. Australian Entomologist, 43 (4), 211–234.
Larsen, T.B. (1991) The butterflies of Kenya and their natural history. Oxford University Press, Oxford, XXII + 490 pp.
Larsen, T.B. (2005) Butterflies of West Africa. Vols. I & II. Apollo Books, Svendborg, 595 pp. & 270 pp.
Legg, D.A, Sutton, M.D. & Edgecombe, G.D. (2013) Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nature Communications, 4, 2485. https://doi.org/10.1038/ncomms3485
Lewis, P. (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50, 913–925. https://doi.org/10.1080/106351501753462876
Losos, J.B. (1999) Uncertainty in the reconstruction of ancestral character state and limitations on the use of phylogenetic comparative methods. Animal Behavior, 58, 1319–1324. https://doi.org/10.1006/anbe.1999.1261
Maddison, W. & Maddison, D. (2011) Mesquite 2.75. Released 30 September 2011. WWW document. Available from: http://mesquiteproject.org/mesquite/mesquite.html (accessed 10 May 2021)
Mitter, C., Davis, D.R. & Cummings, M.P. (2016) Phylogeny and Evolution of Lepidoptera. Annual Review of Entomology, 62, 265–283. https://doi.org/10.1146/annurev-ento-031616-035125
Nixon, K. C. (2002) WinClada. Version 1.0. Published by the author, Ithaca, New York. [program]
O’Reilly, J., Puttick, M., Parry, L., Tanner, A., Tarver, J., Fleming, J., Pisani, D. & Donoghue, P. (2016) Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biological Letter, 12 (20160081), 1–5. https://doi.org/10.1098/rsbl.2016.0081
Ortiz-Acevedo, E., Bonfantti, D., Casagrande, M., Mielke, O.H.H., Espeland, M. & Willmott, K.R. (2017) Using Molecules and Morphology to Unravel the Systematics of Neotropical Preponine Butterflies (Lepidoptera: Charaxinae: Preponini). Insect Systematics and Diversity, 1 (1), 48–56. https://doi.org/10.1093/isd/ixx002
Puttick, M., O’Reilly, J., Tanner, A., Fleming, J., Clark, J., Holloway, L., Lozano-Fernandez, J., Parry, L., Tarver, J., Pisani, D. & Donoghue, P. (2017) Uncertain-tree: discriminating among competing approaches to the phylogenetic analysis of phenotype data. Proceedings of the Royal Society B, 284, 20162290. https://doi.org/10.1098/rspb.2016.2290
Pyrcz, T.W. (2010) Wybrane zagadnienia z taksonomii, zoogeografii i ewolucji faun górskich na przykładzie grupy modelowej motyli z plemienia Pronophilini (Nymphalidae). Mantis, Olsztyn, 245 pp.
Rambaut, A. (2014) FigTree. Version 1.4.2. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 22 December 2019)
Razowski, J. (1996) Słownik morfologii owadów. PWN, Warszawa, 431 pp.
Regier, J.C., Mitter, C., Zwick, A., Bazinet, A.L., Cummings, M.P., Kawahara, A.Y., Sohn, J.C., Zwickl, D.J., Cho, S., Davis, D.R., Baixeras, J., Brown, J., Parr, C., Weller, S., Lees, D.C. & Mitter, K.T. (2013) A Large-Scale, Higher-Level, Molecular Phylogenetic Study of the Insect Order Lepidoptera (Moths and Butterflies). Plos One, 8 (3), 1–23. https://doi.org/10.1371/journal.pone.0058568
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
Sahoo, R.K., Lohman, D.J., Wahlberg, N., Müller, C.J., Brattström, O., Collins, S.C., Peggie, D., Aduse-Poku, K. & Kodandaramaiah, U. (2018) Evolution of Hypolimnas butterflies (Nymphalidae): Out-of-Africa origin and Wolbachia-mediated introgression. Molecular Phylogenetics and Evolution, 123, 50–58. https://doi.org/10.1016/j.ympev.2018.02.001
Sansom, R.S., Wills, M. & Williams, T. (2017) Dental data perform relatively poorly in reconstructing mammal phylogenies: morphological partitions evaluated with molecular benchmarks. Systematic Biology, 66, 813–822. https://doi.org/10.1093/sysbio/syw116
Schrago, C.G., Aguiar, B.O. & Mello, B. (2018) Comparative evaluation of maximum parsimony and Bayesian phylogenetic reconstruction using empirical morphological data. Journal of Evolutionary Biology, 31, 1477–1484. https://doi.org/10.1111/jeb.13344
Sibatani, A., Ogata, M., Okada, Y. & Okagaki, H. (1954) Male Genitalia of Lepidoptera: Morphology and Nomenclature, I. Divisions of the Valvae in Rhopalocera, Phalaenidae (= Noctuidae) and Geometridae. Annals of the Entomological Society of America, 47 (1), 93–106. https://doi.org/10.1093/aesa/47.1.93
Song, H. & Bucheli, S.R. (2010) Comparison of phylogenetic signal between male genitalia and non‐genital characters in insect systematics. Cladistics, 26, 23–35. https://doi.org/10.1111/j.1096-0031.2009.00273.x
Song, Z.S., Bartlett, C.R., O’brien, L.B., Liang, A.P. & Bourgoin, T. (2018) Morphological phylogeny of Dictyopharidae (Hemiptera: Fulgoromorpha). Systematic Entomology, 43 (4), 637–658. https://doi.org/10.1111/syen.12293
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Su, C., Shi, Q., Sun, X., Ma, J., Li, C., Hao, J. & Yang, G. (2017) Dated phylogeny and dispersal history of the butterfly subfamily Nymphalinae (Lepidoptera: Nymphalidae) Scientific Reports, 7 (8799), 1–11. https://doi.org/10.1038/s41598-017-08993-w
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Research, 25, 4876–4882. https://doi.org/10.1093/nar/25.24.4876
Turlin, B. (1994) Faune lepidopterologique de l’Archipel des Comores (Ocean Indien). (Rhopaloceres, Sphingidae, Attacidae). Lambillionea, 94 (4), 591–601.
Vári, L. (1979) The butterflies of southern Africa. Part IV. Nymphalidae; Nymphalinae. Transvaal Museum, Pretoria, 286 pp.
Vilhelmsen, L. (2019) Giant sawflies and their kin: morphological phylogeny of Cimbicidae (Hymenoptera). Systematic Entomology, 44 (1), 103–127. https://doi.org/10.1111/syen.12314
Wahlberg, N., Brower, A.Z.V. & Nylin, S. (2005) Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera: Nymphalidae). Biological Journal of the Linnaean Society, 86, 227–251. https://doi.org/10.1111/j.1095-8312.2005.00531.x
Willams, M.C. (2019) Butterflies and Skippers of the Afrotropical Region. Available from: http://www.lepsocafrica.org (accessed 1 October 2020)
Win, N.Z., Choi, E.Y., Park, J. & Park, J.K. (2016) Taxonomic review of the tribe Junoniini (Lepidoptera: Nymphalidae: Nymphalinae) from Myanmar. Journal of Asia-Pacific Biodiversity, 9, 383–388. https://doi.org/10.1016/j.japb.2016.06.001
Wojtusiak, J. & Pyrcz, T.W. (1995) Observations on the postembryonic development and comments on the systematic status of the butterfly Kamilla cymodoce (Cramer), 1777 (Lepidoptera: Nymphalidae). Lambillionea, 95 (1), Tome II, 116–120.
Wright, A. & Hillis, D. (2014) Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS One, 9, 109210. https://doi.org/10.1371/journal.pone.0109210
Zacca, T., Mielke, O.H.H., Pyrcz, T.W., Dias, F.M.S, Casagrande, M.M. & Boyer, P. (2017) Systematics of the Neotropical genus Pampasatyrus Hayward, 1953 (Lepidoptera: Satyrinae: Pronophilina), with description of three new taxa. Insect Systematics & Evolution, 48, 201–255. https://doi.org/10.1163/1876312X-48022154
Zhang, J. (2018) Neutral theory and phenotypic evolution. Molecular Biology and Evolution, 35, 1327