Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-08-30
Page range: 127-135
Abstract views: 520
PDF downloaded: 25

Comparative mitogenomes and phylogenetic analysis reveal taxonomic relationship of genera Teredorus and Systolederus (Orthoptera, Tetrigoidea)

College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China.
College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China.
Orthoptera Teredorus Comparative mitogenome Phylogeny

Abstract

The genera Teredorus and Systolederus belong to Tetriginae and Metrodorinae respectively. However, species within these two genera have strikingly similar features, made it difficult to identify clearly by morphological characteristics. In this study, we sequenced the mitochondrial genomes (mitogenomes) of two Teredorus species, and compared them with Systolederus mitochondrial sequences. The sequenced mitogenomes of T. hainanensis and T. bashanensis are 14,946 bp and 14,775 bp in size, respectively. The A+T content of mitogenomes is 76.2% (T. hainanensis) and 74.0% (T. bashanensis). Comparative analysis showed that mitochondrial sequences and structure were similar within these two genera. The results of K2P distances and phylogenetic analysis revealed that Systolederus and Teredorus might be likely considered as one genus of Teredorus. It will provide important resources for further understanding of the taxonomy and phylogenetic relationship of Systolederus and Teredorus.

 

References

  1. Chang, H., Qiu, Z., Yuan, H., Wang, X., Li, X., Sun, H., Guo, X., Lu, Y., Feng, X., Majid, M. & Huang, Y. (2020) Evolutionary rates of and selective constraints on the mitochondrial genomes of Orthoptera insects with different wing types. Molecular Phylogenetics and Evolution, 145, 106734. http://doi.org/10.1016/j.ympev.2020.106734
    Chen, Y.Z., Deng, W.A., Wang, J.M., Lin, L.L. & Zhou, S.Y. (2018) Phylogenetic relationships of Scelimeninae genera (Orthoptera: Tetrigoidea) based on COI, 16S rRNA and 18S rRNA gene sequences. Zootaxa, 4482 (2), 392–400. http://doi.org/10.11646/zootaxa.4482.2.11
    Deng, W.A., Lei, C.L. & Zheng, Z.M. (2014) Two new species of the genus Teredorus Hancock, 1906 (Orthoptera, Tetrigidae) from China, with a key to the species of the genus. Zookeys, 431, 33–49. https://doi.org/10.3897/zookeys.431.8002
    Deng, W.A. (2016) Taxonomic study of Tetrigoidea from China. Ph.D. dissertation, Huazhong Agricultural University, Wuhan, Hubei, 341 pp.
    Fang, N., Xuan, W.J., Zhang, Y.Y. & Jiang, G.F. (2010) Molecular phylogeny of Chinses Tetrigoids (Orthoptera, Tetrigoidea) based on the mitochondrial cytochrome coxidase I gene. Acta Zootaxonomica Sinica, 35, 696–702. https://doi.org/10.1016/S1002-0721(10)60377-8
    Gaurav, V., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27, 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
    Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
    Li, R., Ying, X., Deng, W., Rong, W. & Li, X. (2021) Mitochondrial genomes of eight Scelimeninae species (Orthoptera) and their phylogenetic implications within Tetrigoidea. PeerJ, 9, e10523. https://doi.org/10.7717/peerj.10523
    Lin, L.L., Li, X.J., Zhang, H.L. & Zheng, Z.M. (2017) Mitochondrial genomes of three Tetrigoidea species and phylogeny of Tetrigoidea. PeerJ, 5, e4002. https://doi.org/10.7717/peerj.4002
    Lin, M.P., Li, X.D., Wei, S.Z. & Deng, W.A. (2015) Mitochondrial COI gene partial sequences and phylogenetic relationship of some groups of Tetrigoidea. Journal of Huazhong Agricultural University, 34, 40–48. https://doi.org/10.13300/j.cnki.hnlkxb.2015.06.050
    Lowe, T.M. & Eddy, S.R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25, 955–964. https://doi.org/10.1093/nar/25.5.955
    Masta, S.E. & Boore, J.L. (2004) The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. Molecular Biology and Evolution, 21, 893–902. https://doi.org/10.1093/molbev/msh096
    Meng, G., Li, Y., Yang, C. & Liu, S. (2019) MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research, 47, e63. https://doi.org/10.1093/nar/gkz173
    Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300
    Qiu, Z., Chang, H., Yuan, H., Huang, Y., Lu, H., Li, X. & Gou, X. (2020) Comparative mitochondrial genomes of four species of Sinopodisma and phylogenetic implications (Orthoptera, Melanoplinae). Zookeys, 969, 23–42. https://doi.org/10.3897/zookeys.969.49278
    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
    Song, H., Amédégnato, C., Cigliano, M.M., Desutter-Grandcolas, L., Heads, S.W., Huang, Y., Otte, D. & Whiting, M.F. (2015) 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics, 31, 621–651. https://doi.org/10.1111/cla.12116
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739. https://doi.org/10.1093/molbev/msr121
    Wolstenholme, D.R. (1992) Animal mitochondrial DNA: structure and evolution. International Review of Cytology, 141, 173–216. https://doi.org/10.1016/s0074-7696(08)62066-5
    Zhang, H.L., Zhao, L., Zheng, Z.M. & Huang, Y. (2013) Complete mitochondrial genome of Gomphocerus sibiricus (Orthoptera: Acrididae) and comparative analysis in four Gomphocerinae mitogenomes. Zoological Science, 30, 192–204. https://doi.org/10.2108/zsj.30.192
    Zhang, R.J., Zhao, C.L., Wu, F.P. & Deng, W.A. (2020) Molecular data provide new insights into the phylogeny of Cladonotinae (Orthoptera: Tetrigoidea) from China with the description of a new genus and species. Zootaxa, 4809 (3), 547–559. https://doi.org/10.11646/zootaxa.4809.3.8
    Zhang, D., Gao, F., Jakovlić, I., Zou, H., Zhang, J., Li, W.X. & Wang GT. (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20, 348–355. https://doi.org/10.1111/1755-0998.13096
    Zheng, Z.M. & Xu, S.Q. (2010) A review of the genus Teredorus Hancock (Orthoptera:Tetrigidae) from China and adjacent countries with description two new species. Journal of Huazhong Agricultural University, 29, 14–20. https://doi.org/10.1016/S1002-0721(10)60377-8
    Zhou, Z., Zhao, L., Liu, N., Guo, H., Guan, B., Di, J. & Shi, F. (2017) Towards a higher-level Ensifera phylogeny inferred from mitogenome sequences. Molecular Phylogenetics and Evolution, 108, 22–33. https://doi.org/10.1016/j.ympev.2017.01.014

  2.  

  3.  

  4.  

  5.  

  6.  

  7.  

  8.  

  9.  

  10.  

  11.  

  12.