Abstract
We evaluate the role of biogeographical affinity in shaping relationships between ecological diversity as a proxy of functional diversity and phylogenetic diversity and their association with environmental variation, across tropical and temperate latitudes of the Americas. If environmental niches are evolutionarily conserved, high mammal taxa of tropical and temperate affinity will show consistent differences in these relationships. Accordingly, mammal groups of tropical affinity (old-autochthonous: marsupials and xenarthrans; and mid-Cenozoic immigrants: hystricognaths and primates) show stronger positive correlations between ecological and phylogenetic diversity within the tropics than those from extra-tropical latitudes where newcomers from North America (artiodactyls) show the strongest positive correlations. The other group of newcomers (carnivorans), however, show a peak in the association that include both tropical and extra-tropical latitudes of South America. Climate predominates over topographic relief in structuring the spatial variation of ecological and phylogenetic mammal diversity. The environmental structuring of ecological and phylogenetic mammal diversity across the Americas is more complex than expected from a latitudinal diversity gradient. Dry seasonal tropical habitats generated considerable heterogeneity in relationships between ecological and phylogenetic diversity and their association with environmental correlates. We conclude that biogeographical affinity and regional associations between the different components of diversity and the environment should be considered for a comprehensive explanation of covariation between ecological and phylogenetic diversity on a continental scale.
References
Aguirre-Gutiérrez, J., Malhi, Y., Lewis, S.L., Fauset, S., Adu-Bredu, S., Affum-Baffoe, K., Baker, T.R., Gvozdevaite, A., Hubau, W. & Moore, S. (2020) Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nature Communications, 11, 1–10. https://doi.org/10.1038/s41467-020-16973-4
Antoine, P.-O., Marivaux, L., Croft, D.A., Billet, G., Ganerød, M., Jaramillo, C., Martin, T., Orliac, M.J., Tejada, J. & Altamirano, A.J. (2012) Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proceedings of the Royal Society of London B: Biological Sciences, 279, 1319–1326. https://doi.org/10.1098/rspb.2011.1732
Antonelli, A., Kissling, W.D., Flantua, S.G., Bermúdez, M.A., Mulch, A., Muellner-Riehl, A.N., Kreft, H., Linder, H.P., Badgley, C. & Fjeldså, J. (2018) Geological and climatic influences on mountain biodiversity. Nature Geoscience, 11, 718–725. https://doi.org/10.1038/s41561-018-0236-z
Badgley, C. (2010) Tectonics, topography, and mammalian diversity. Ecography, 33, 220–231. https://doi.org/10.1111/j.1600-0587.2010.06282.x
Badgley, C. & Fox, D.L. (2000) Ecological biogeography of North American mammals: species density and ecological structure in relation to environmental gradients. Journal of Biogeography, 27, 1437–1467. https://doi.org/10.1046/j.1365-2699.2000.00498.x
Badgley, C., Smiley, T.M., Terry, R., Davis, E.B., DeSantis, L.R., Fox, D.L., Hopkins, S.S., Jezkova, T., Matocq, M.D. & Matzke, N. (2017) Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends in Ecology & Evolution, 32, 211–226. https://doi.org/10.1016/j.tree.2016.12.010
Bae, S., Müller, J., Lee, D., Vierling, K.T., Vogeler, J.C., Vierling, L.A., Hudak, A.T., Latifi, H. & Thorn, S. (2018) Taxonomic, functional, and phylogenetic diversity of bird assemblages are oppositely associated to productivity and heterogeneity in temperate forests. Remote Sensing of Environment, 215, 145–156. https://doi.org/10.1016/j.rse.2018.05.031
Bailey, J.J., Boyd, D.S., Hjort, J., Lavers, C.P. & Field, R. (2017) Modelling native and alien vascular plant species richness: At which scales is geodiversity most relevant? Global Ecology and Biogeography, 26, 763–776. https://doi.org/10.1111/geb.12574
Barreto, E., Graham, C.H. & Rangel, T.F. (2019) Environmental factors explain the spatial mismatches between species richness and phylogenetic diversity of terrestrial mammals. Global Ecology and Biogeography, 28, 1855–1865. https://doi.org/10.1111/geb.12999
Berghuijs, W.R. & Woods, R.A. (2016) A simple framework to quantitatively describe monthly precipitation and temperature climatology. International Journal of Climatology, 36, 3161–3174. https://doi.org/10.1002/joc.4544
Bershaw, J., Garzione, C.N., Higgins, P., MacFadden, B.J., Anaya, F. & Alvarenga, H. (2010) Spatial–temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth and Planetary Science Letters, 289, 530–538. https://doi.org/10.1016/j.epsl.2009.11.047
Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L. & Purvis, A. (2007) The delayed rise of present-day mammals. Nature, 446, 507–512. https://doi.org/10.1038/nature05634
Brown, J.H. (2014) Why are there so many species in the tropics? Journal of Biogeography, 41, 8–22. https://doi.org/10.1111/jbi.12228
Buckley, L.B., Davies, T.J., Ackerly, D.D., Kraft, N.J.B., Harrison, S.P., Anacker, B.L., Cornell, H.V., Damschen, E.I., Grytnes, J.-A. & Hawkins, B.A. (2010) Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proceedings of the Royal Society B: Biological Sciences, 277, 2131–2138. https://doi.org/10.1098/rspb.2010.0179
Cadotte, M.W., Dinnage, R. & Tilman, D. (2012) Phylogenetic diversity promotes ecosystem stability. Ecology, 93, S223–S233. https://doi.org/10.1890/11-0426.1
Cadotte, M.W. & Tucker, C.M. (2017) Should environmental filtering be abandoned? Trends in Ecology & Evolution, 32, 429–437. https://doi.org/10.1016/j.tree.2017.03.004
Carmignotto, A.P., de Vivo, M., Langguth, A., Patterson, B. & Costa, L. (2012) Mammals of the Cerrado and Caatinga: distribution patterns of the tropical open biomes of Central South America. In: Patterson, B.D. & Costa, L.P. (Eds.), Bones, Clones and Biomes. The History and Geography of Recent Neotropical Mammals. University of Chicago Press, Chicago, Illinois, pp. 307–350. https://doi.org/10.7208/chicago/9780226649214.003.0014
Cohen, d. (2004) The evolutionary ecology of species diversity in stressed and extreme environments. In: Seckbach, J. (Ed.), Origins: Genesis, Evolution and Diversity of Life. Kluwer Academic Publishers, Dordrecht, pp. 503–514. https://doi.org/10.1007/1-4020-2522-X_30
Conith, A.J., Meagher, M.A. & Dumont, E.R. (2018) The influence of climatic variability on morphological integration, evolutionary rates, and disparity in the Carnivora. The American Naturalist, 191, 704–715. https://doi.org/10.1086/697376
Connell, J.H. & Orias, E. (1964) The ecological regulation of species diversity. The American Naturalist, 98, 399–414. https://doi.org/10.1086/282335
Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guégan, J.-F., Hawkins, B.A., Kaufman, D.M., Kerr, J.T., Oberdorff, T., O’Brien, E. & Turner, J.R.G. (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 12, 1121–1134. https://doi.org/10.1111/j.1461-0248.2004.00671.x
da Silva, F.R., Almeida-Neto, M., do Prado, V.H.M., Haddad, C.F.B. & de Cerqueira Rossa-Feres, D. (2012) Humidity levels drive reproductive modes and phylogenetic diversity of amphibians in the Brazilian Atlantic Forest. Journal of Biogeography, 39, 1720–1732. https://doi.org/10.1111/j.1365-2699.2012.02726.x
Davies, J.T., Meiri, S., Barraclough, T.G. & Gittleman, J.L. (2007a) Species co-existence and character divergence across carnivores. Ecology Letters, 10, 146–152. https://doi.org/10.1111/j.1461-0248.2006.01005.x
Davies, R.G., Orme, C.D.L., Webster, A.J., Jones, K.E., Blackburn, T.M. & Gaston, K.J. (2007b) Environmental predictors of global parrot (Aves: Psittaciformes) species richness and phylogenetic diversity. Global Ecology and Biogeography, 16, 220–233. https://doi.org/10.1111/j.1466-8238.2007.00282.x
Davies, T.J. & Buckley, L.B. (2011) Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2414–2425. https://doi.org/10.1098/rstb.2011.0058
Davies, T.J., Buckley, L.B., Grenyer, R. & Gittleman, J.L. (2011) The influence of past and present climate on the biogeography of modern mammal diversity. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366, 2526–2535. https://doi.org/10.1098/rstb.2011.0018
de Bello, F., Carmona, C.P., Lepš, J., Szava-Kovats, R. & Pärtel, M. (2016) Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia, 180, 933–940. https://doi.org/10.1007/s00442-016-3546-0
Delsuc, F., Vizcaíno, S.F. & Douzery, E.J.P. (2004) Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans. BMC Evolutionary Biology, 4, 1–13. https://doi.org/10.1186/1471-2148-4-11
Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W. & Mouquet, N. (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters, 13, 1030–1040. https://doi.org/10.1111/j.1461-0248.2010.01493.x
Environmental Systems Research Institute Inc. (2007) ArcGIS 9.2. ESRI, Redlands, California. [program]
Eronen, J., Puolamäki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C. & Fortelius, M. (2010) Precipitation and large herbivorous mammals I: estimates from present-day communities. Evolutionary Ecology Research, 12, 217–233.
Evans, K.L., Warren, P.H. & Gaston, K.J. (2005) Species-energy relationships at the macroecological scale: a review of the mechanisms. Biological Review, 80, 1–25. https://doi.org/10.1017/S1464793104006517
Feng, G., Zhang, J., Girardello, M., Pellissier, V. & Svenning, J.C. (2020) Forest canopy height co-determines taxonomic and functional richness, but not functional dispersion of mammals and birds globally. Global Ecology and Biogeography, 29, 1350–1359. https://doi.org/10.1111/geb.13110
Fergnani, P.N. & Ruggiero, A. (2015) Ecological diversity in South American mammals: their geographical distribution shows variable associations with phylogenetic diversity and does not follow the latitudinal richness gradient. PloS ONE, 10, e0128264. https://doi.org/10.1371/journal.pone.0128264
Fergnani, P.N. & Ruggiero, A. (2017) The latitudinal diversity gradient in South American mammals revisited using a regional analysis approach: The importance of climate at extra-tropical latitudes and history towards the tropics. PloS ONE, 12, e0184057. https://doi.org/10.1371/journal.pone.0184057
Ferro, I., Navarro-Sigüenza, A.G. & Morrone, J.J. (2017) Biogeographical transitions in the Sierra Madre Oriental, Mexico, shown by chorological and evolutionary biogeographical affinities of passerine birds (Aves: Passeriformes). Journal of Biogeography, 44, 2145–2160. https://doi.org/10.1111/jbi.13015
Field, P. & Heymsfield, A. (2015) Importance of snow to global precipitation. Geophysical Research Letters, 42, 9512–9520. https://doi.org/10.1002/2015GL065497
Figueiredo, M. & Grelle, C. (2018) Phylogenetic diversity as a key to understand mechanisms of New World marsupials diversification (Didelphimorphia: Didelphidae). Oecologia Australis, 22, 168–178. https://doi.org/10.4257/oeco.2018.2202.06
Fleming, T.H. (1973) Numbers of mammal species in North and Central American forest communities. Ecology, 54, 555–563. https://doi.org/10.2307/1935340
Foley, J.A., Prentice, I.C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S. & Haxeltine, A. (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10, 603–628. https://doi.org/10.1029/96GB02692
Foody, G.M. (2005) Clarifications on local and global data analysis. Global Ecology and Biogeography, 14, 99–100. https://doi.org/10.1111/j.1466-822X.2005.00142.x
Fotheringham, A.S. & Oshan, T.M. (2016) Geographically weighted regression and multicollinearity: dispelling the myth. Journal of Geographical Systems, 18, 303–329. https://doi.org/10.1007/s10109-016-0239-5
Fritz, S.A. & Rahbek, C. (2012) Global patterns of amphibian phylogenetic diversity. Journal of Biogeography, 39, 1373–1382. https://doi.org/10.1111/j.1365-2699.2012.02757.x
García-Navas, V. (2019) Phylogenetic and functional diversity of African muroid rodents at different spatial scales. Organisms Diversity & Evolution, 19, 637–650. https://doi.org/10.1007/s13127-019-00411-5
Gillman, L.N. & Wright, S.D. (2014) Species richness and evolutionary speed: the influence of temperature, water and area. Journal of Biogeography, 41, 39–51. https://doi.org/10.1111/jbi.12173
Gómez-Ortiz, Y., Domínguez-Vega, H. & Moreno, C. (2017) Spatial variation of mammal richness, functional and phylogenetic diversity in the Mexican Transition Zone. Community Ecology, 18, 121–127. https://doi.org/10.1556/168.2017.18.2.1
González-Maya, J.F., Martínez-Meyer, E., Medellín, R. & Ceballos, G. (2017) Distribution of mammal functional diversity in the Neotropical realm: Influence of land-use and extinction risk. PloS ONE, 12, e0175931. https://doi.org/10.1371/journal.pone.0175931
González-Maya, J., Arias-Alzate, A., Granados-Peña, R., Mancera-Rodríguez, N. & Ceballos, G. (2016) Environmental determinants and spatial mismatch of mammal diversity measures in Colombia. Animal Biodiversity and Conservation, 39, 77–87. https://doi.org/10.32800/abc.2016.39.0077
Gouveia, S.F., Hortal, J., Cassemiro, F.A.S., Rangel, T.F. & Diniz-Filho, J.A.F. (2013) Nonstationary effects of productivity, seasonality, and historical climate changes on global amphibian diversity. Ecography, 36, 104–113. https://doi.org/10.1111/j.1600-0587.2012.07553.x
Gower, J.C. (1971) A general coefficient of similarity and some of its properties. Biometrics, 27, 857–871. https://doi.org/10.2307/2528823
Harrison, S. & Grace, J.B. (2007) Biogeographic affinity helps explain productivity-richness relationships at regional and local scales. The American Naturalist, 170, S5–S15. https://doi.org/10.1086/519010
Harvey, P.H. & Pagel, M.D. (1991) The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, 239 pp.
Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Berdorff, T.C., O´Brien, E.M., Porter, E.E. & Turner, J.R.G. (2003a) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105–3117. https://doi.org/10.1890/03-8006
Hawkins, B.A., Porter, E.E. & Diniz-Filho, J.A.F. (2003b) Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology, 84, 1608–1623. https://doi.org/10.1890/0012-9658(2003)084[1608:PAHAPO]2.0.CO;2
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.
Holt, B.G., Costa, G.C., Penone, C., Lessard, J.P., Brooks, T.M., Davidson, A.D., Blair Hedges, S., Radeloff, V.C., Rahbek, C. & Rondinini, C. (2018) Environmental variation is a major predictor of global trait turnover in mammals. Journal of Biogeography, 45, 225–237. https://doi.org/10.1111/jbi.13091
Hortal, J., Diniz-Filho, J.A.F., Bini, L.M., Rodríguez, M.Á., Baselga, A., Nogués-Bravo, D., Rangel, T.F., Hawkins, B.A. & Lobo, J.M. (2011) Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters, 14, 741–748. https://doi.org/10.1111/j.1461-0248.2011.01634.x
Hu, Y., Fan, H., Chen, Y., Chang, J., Zhan, X., Wu, H., Zhang, B., Wang, M., Zhang, W. & Yang, L. (2021) Spatial patterns and conservation of genetic and phylogenetic diversity of wildlife in China. Science Advances, 7, eabd5725. https://doi.org/10.1126/sciadv.abd5725
Huang, S., Stephens, P.R. & Gittleman, J.L. (2012) Traits, trees and taxa: global dimensions of biodiversity in mammals. Proceedings of the Royal Society B: Biological Sciences, 279, 4997–5003. https://doi.org/10.1098/rspb.2012.1981
Humphries, M.M., Studd, E.K., Menzies, A.K. & Boutin, S. (2017) To everything there is a season: summer-to-winter food webs and the functional traits of keystone species. Integrative and Comparative Biology, 57, 961–976. https://doi.org/10.1093/icb/icx119
Jansa, S.A., Barker, F.K. & Voss, R.S. (2014) The early diversification history of didelphid marsupials: a window into South America's “Splendid Isolation”. Evolution, 68, 684–695. https://doi.org/10.1111/evo.12290
Keith, S.A., Kerswell, A.P. & Connolly, S.R. (2014) Global diversity of marine macroalgae: environmental conditions explain less variation in the tropics. Global Ecology and Biogeography, 23, 517–529. https://doi.org/10.1111/geb.12132
Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P. & Webb, C.O. (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463–1464. https://doi.org/10.1093/bioinformatics/btq166
Kerr, J.T. & Packer, L. (1997) Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature, 385, 252–254. https://doi.org/10.1038/385252a0
Knoben, W.J., Woods, R.A. & Freer, J.E. (2019) Global bimodal precipitation seasonality: A systematic overview. International Journal of Climatology, 39, 558–567. https://doi.org/10.1002/joc.5786
Konapala, G., Mishra, A.K., Wada, Y. & Mann, M.E. (2020) Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications, 11, 1–10. https://doi.org/10.1038/s41467-020-16757-w
Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. (2006) World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrif, 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130
Kucharik, C.J., Foley, J.A., Delire, C., Fisher, V.A., Coe, M.T., Lenters, J.D., Young-Molling, C., Ramankutty, N., Norman, J.M. & Gower, S.T. (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles, 14, 795–825. https://doi.org/10.1029/1999GB001138
Laliberté, E. & Legendre, P. (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299–305. https://doi.org/10.1890/08-2244.1
Laliberté, E. & Shipley, B. (2010) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-9. Available from: http://cran.r-project.org. (accessed 10 September 2011)
Losos, J.B. (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995–1003. https://doi.org/10.1111/j.1461-0248.2008.01229.x
Mares, M. (1997) The geobiological interface: granitic outcrops as a selective force in mammalian evolution. Journal of the Royal Society of Western Australia, 80, 131–139.
Mares, M.A., Willig, M.R. & Lacher Jr, T.E. (1985) The Brazilian Caatinga in South American zoogeography: tropical mammals in a dry region. Journal of Biogeography, 12, 57–69. https://doi.org/10.2307/2845029
Marquaridt, D.W. (1970) Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation. Technometrics, 12, 591–612. https://doi.org/10.1080/00401706.1970.10488699
Martín-Regalado, C.N., Briones-Salas, M., Manríquez-Morán, N., Sánchez-Rojas, G., Cornejo-Latorre, C., Lavariega, M.C. & Moreno, C.E. (2020) Assembly mechanisms and environmental predictors of the phylogenetic diversity of cricetid rodents in southern Mexico. Evolutionary Ecology, 34, 1–17. https://doi.org/10.1007/s10682-020-10034-4
Matthews, S.A. & Yang, T.-C. (2012) Mapping the results of local statistics: Using geographically weighted regression. Demographic Research, 26, 151–166. https://doi.org/10.4054/DemRes.2012.26.6
Meynard, C.N., Devictor, V., Mouillot, D., Thuiller, W., Jiguet, F. & Mouquet, N. (2011) Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France? Global Ecology and Biogeography, 20, 893–903. https://doi.org/10.1111/j.1466-8238.2010.00647.x
Milly, P.C., Dunne, K.A. & Vecchia, A.V. (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347–350. https://doi.org/10.1038/nature04312
Moraes, B., Razgour, O., Souza-Alves, J.P., Boubli, J.P. & Bezerra, B. (2020) Habitat suitability for primate conservation in north-east Brazil. Oryx, 54, 803–813. https://doi.org/10.1017/S0030605319001388
Morales-Castilla, I., Olalla-Tarraga, M.A., Purvis, A., Hawkins, B.A. & Rodríguez, M.A. (2012) The imprint of Cenozoic migrations and evolutionary history on the biogeographic gradient of body size in New World mammals. The American Naturalist, 180, 246–256. https://doi.org/10.1086/666608
Morrone, J.J. (2014) On biotas and their names. Systematics and Biodiversity, 12, 386–392. https://doi.org/10.1080/14772000.2014.942717
Moura, M.R., Villalobos, F., Costa, G.C. & Garcia, P.C. (2016) Disentangling the role of climate, topography and vegetation in species richness gradients. PloS ONE, 11, e0152468. https://doi.org/10.1371/journal.pone.0152468
Neves, D.M., Kerkhoff, A.J., Echeverría-Londoño, S., Merow, C., Morueta-Holme, N., Peet, R.K., Sandel, B., Svenning, J.-C., Wiser, S.K. & Enquist, B.J. (2021) The adaptive challenge of extreme conditions shapes evolutionary diversity of plant assemblages at continental scales. Proceedings of the National Academy of Sciences, 118, e2021132118. https://doi.org/10.1073/pnas.2021132118
Novillo, A. & Ojeda, R.A. (2014) Elevation patterns in rodent diversity in the dry Andes: Disentangling the role of environmental factors. Journal of Mammalogy, 95, 99–107. https://doi.org/10.1644/13-MAMM-A-086.1
O'Brien, E.M. (2006) Biological relativity to water-energy dynamics. Journal of Biogeography, 33, 1868–1888. https://doi.org/10.1111/j.1365-2699.2006.01534.x
O'Brien, R.M. (2007) A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41, 673–690. https://doi.org/10.1007/s11135-006-9018-6
Ochoa-Ochoa, L.M., Mejía-Domínguez, N.R., Velasco, J.A., Dimitrov, D. & Marske, K.A. (2020) Dimensions of amphibian alpha diversity in the New World. Journal of Biogeography, 47, 2293–2302. https://doi.org/10.1111/jbi.13948
Ochoa-Ochoa, L.M., Mejía-Domínguez, N.R., Velasco, J.A., Marske, K.A. & Rahbek, C. (2019) Amphibian functional diversity is related to high annual precipitation and low precipitation seasonality in the New World. Global Ecology and Biogeography, 28, 1219–1229. https://doi.org/10.1111/geb.12926
Olalla-Tárraga, M.Á., McInnes, L., Bini, L.M., Diniz-Filho, J.A.F., Fritz, S.A., Hawkins, B.A., Hortal, J., Orme, C.D.L., Rahbek, C. & Rodríguez, M.Á. (2011) Climatic niche conservatism and the evolutionary dynamics in species range boundaries: global congruence across mammals and amphibians. Journal of Biogeography, 38, 2237–2247. https://doi.org/10.1111/j.1365-2699.2011.02570.x
Oliveira, B.F., Machac, A., Costa, G.C., Brooks, T.M., Davidson, A.D., Rondinini, C. & Graham, C.H. (2016) Species and functional diversity accumulate differently in mammals. Global Ecology and Biogeography, 25, 1119–1130. https://doi.org/10.1111/geb.12471
Ortiz-Jaureguizar, E. & Cladera, G.A. (2006) Paleoenvironmental evolution of southern South America during the Cenozoic. Journal of Arid Environments, 66, 498–532. https://doi.org/10.1016/j.jaridenv.2006.01.007
Pascual, R. (2006) Evolution and geography: The biogeographic history of South American land mammals. Annals of the Missouri Botanical Garden, 93, 209–230. https://doi.org/10.3417/0026-6493(2006)93[209:EAGTBH]2.0.CO;2
Patterson, B.D., Ceballos, G., Sechrest, W., Tognelli, M.F., Brooks, T., Luna, L., Ortega, P., Salazar, I. & Young, B.E. (2003) Digital Distribution Maps of the Mammals of the Western Hemisphere. NatureServe, Arlington County, Virginia. [CD-Rom]
Pérez, S.I., Tejedor, M.F., Novo, N.M. & Aristide, L. (2013) Divergence times and the evolutionary radiation of New World monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data. PloS ONE, 8, e68029. https://doi.org/10.1371/journal.pone.0068029
Petchey, O.L. & Gaston, K.J. (2006) Functional diversity: back to basics and looking forward. Ecology Letters, 9, 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x
Pianka, E.R. (1966) Latitudinal gradients in species diversity: a review of concepts. The American Naturalist, 100, 33–46. https://doi.org/10.1086/282398
Rangel, T.F., Diniz-Filho, J.A.F. & Bini, L.M. (2010) SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography, 33, 46–50. https://doi.org/10.1111/j.1600-0587.2009.06299.x
Read, Q.D., Zarnetske, P.L., Record, S., Dahlin, K.M., Costanza, J.K., Finley, A.O., Gaddis, K.D., Grady, J.M., Hobi, M.L. & Latimer, A.M. (2020) Beyond counts and averages: Relating geodiversity to dimensions of biodiversity. Global Ecology and Biogeography, 29, 696–710. https://doi.org/10.1111/geb.13061
Rocha, R.G., Ferreira, E., Loss, A.C., Heller, R., Fonseca, C. & Costa, L.P. (2015) The Araguaia river as an important biogeographical divide for didelphid marsupials in central Brazil. Journal of Heredity, 106, 593–607. https://doi.org/10.1093/jhered/esv058
Rohde, K. (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65, 514–527. https://doi.org/10.2307/3545569
Ruggiero, A. & Kitzberger, T. (2004) Environmental correlates of mammal species richness in South America: Effects of spatial structure, taxonomy and geographic range. Ecography, 27, 401–416. https://doi.org/10.1111/j.0906-7590.2004.03801.x
Safi, K., Cianciaruso, M.V., Loyola, R.D., Brito, D., Armour-Marshall, K. & Diniz-Filho, J.A.F. (2011) Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2536–2544. https://doi.org/10.1098/rstb.2011.0024
Saladin, B., Pellissier, L., Graham, C.H., Nobis, M.P., Salamin, N. & Zimmermann, N.E. (2020) Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity. Nature Communications, 11, 1–8. https://doi.org/10.1038/s41467-020-18343-6
Santos, A.M., Cianciaruso, M.V., Barbosa, A.M., Bini, L.M., Diniz-Filho, J.A.F., Faleiro, F.V., Gouveia, S.F., Loyola, R., Medina, N.G. & Rangel, T.F. (2020) Current climate, but also long-term climate changes and human impacts, determine the geographic distribution of European mammal diversity. Global Ecology and Biogeography, 29, 1758–1769. https://doi.org/10.1111/geb.13148
Schluter, D. (2000) The Ecology of Adaptive Radiation. Oxford University Press, New York, New York, 288 pp.
Siepielski , A.M., Morrissey, M.B., Buoro, M., Carlson, S.M., Caruso, C.M., Clegg, S.M., Coulson, T., DiBattista, J., Gotanda, K.M. & Francis, C.D. (2017) Precipitation drives global variation in natural selection. Science, 355, 959–962. https://doi.org/10.1126/science.aag2773
Speed, J.D., Skjelbred, I.Å., Barrio, I.C., Martin, M.D., Berteaux, D., Bueno, C.G., Christie, K.S., Forbes, B.C., Forbey, J. & Fortin, D. (2019) Trophic interactions and abiotic factors drive functional and phylogenetic structure of vertebrate herbivore communities across the Arctic tundra biome. Ecography, 42, 1152–1163. https://doi.org/10.1111/ecog.04347
Springer, M.S., Meredith, R.W., Janecka, J.E. & Murphy, W.J. (2011) The historical biogeography of Mammalia. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2478–2502. https://doi.org/10.1098/rstb.2011.0023
Stein, A., Gerstner, K. & Kreft, H. (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866–880. https://doi.org/10.1111/ele.12277
Stevens, R.D. (2011) Relative effects of time for speciation and tropical niche conservatism on the latitudinal diversity gradient of phyllostomid bats. Proceedings of the Royal Society B: Biological Sciences, 278, 2528–2536. https://doi.org/10.1098/rspb.2010.2341
Stevens, R.D. & Gavilanez, M.M. (2015) Dimensionality of community structure: phylogenetic, morphological and functional perspectives along biodiversity and environmental gradients. Ecography, 38, 861–875. https://doi.org/10.1111/ecog.00847
Stevens, R.D., Rowe, R.J. & Badgley, C. (2019) Gradients of mammalian biodiversity through space and time. Journal of Mammalogy, 100, 1069–1086. https://doi.org/10.1093/jmammal/gyz024
Theodoridis, S., Fordham, D.A., Brown, S.C., Li, S., Rahbek, C. & Nogues-Bravo, D. (2020) Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nature Communications, 11, 1–11. https://doi.org/10.1038/s41467-020-16449-5
Thuiller, W., Gravel, D., Ficetola, G.F., Lavergne, S., Münkemüller, T., Pollock, L.J., Zimmermann, N.E. & Mazel, F. (2020) Productivity begets less phylogenetic diversity but higher uniqueness than expected. Journal of Biogeography, 47, 44–58. https://doi.org/10.1111/jbi.13630
Tognelli, M.F. & Kelt, D.A. (2004) Analysis of determinants of mammalian species richness in South America using spatial autoregressive models. Ecography, 27, 427–436. https://doi.org/10.1111/j.0906-7590.2004.03732.x
Tonkin, J.D., Bogan, M.T., Bonada, N., Rios-Touma, B. & Lytle, D.A. (2017) Seasonality and predictability shape temporal species diversity. Ecology, 98, 1201–1216. https://doi.org/10.1002/ecy.1761
Vázquez, D.P., Gianoli, E., Morris, W.F. & Bozinovic, F. (2017) Ecological and evolutionary impacts of changing climatic variability. Biological Reviews, 92, 22–42. https://doi.org/10.1111/brv.12216
Verzi, D.H., Morgan, C.C. & Olivares, A.I. (2015) The history of South American octodontoid rodents and its contribution to evolutionary. In: Cox, P.G. & Hautier, L. (Eds.), Evolution of the Rodents: Advances in Phylogeny, Functional Morphology and Development. Vol. 5. Cambridge University Press, Cambridge, pp. 139–163. https://doi.org/10.1017/CBO9781107360150.006
Vetaas, O.R. (2006) Biological relativity to water–energy dynamics: a potential unifying theory? Journal of Biogeography, 33, 1866–1867. https://doi.org/10.1111/j.1365-2699.2006.01618.x
Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
Whittaker, R.J., Nogués-Bravo, D. & Araújo, M.B. (2007) Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Global Ecology and Biogeography, 16, 76–89. https://doi.org/10.1111/j.1466-8238.2006.00268.x
Wiens, J.J. & Donoghue, M.J. (2004) Historical biogeography, ecology and species richness. Trends in Ecology & Evolution, 19, 639–644. https://doi.org/10.1016/j.tree.2004.09.011
Wilson, D.E. & Reeder, D.A.M. (2005) Mammal Species of the World: A Taxonomic and Geographic Reference. Johns Hopkins University Press, Baltimore, Maryland, 2142 pp.
Williams, C.M., Ragland, G.J., Betini, G., Buckley, L.B., Cheviron, Z.A., Donohue, K., Hereford, J., Humphries, M.M., Lisovski, S. & Marshall, K.E. (2017) Understanding evolutionary impacts of seasonality: An introduction to the symposium. Integrative and Comparative Biology, 57, 921–933. https://doi.org/10.1093/icb/icx122
Winter, M., Devictor, V. & Schweiger, O. (2013) Phylogenetic diversity and nature conservation: where are we? Trends in Ecology & Evolution, 28, 199–204. https://doi.org/10.1016/j.tree.2012.10.015
Woodburne, M.O. (2010) The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution, 17, 245–264. https://doi.org/10.1007/s10914-010-9144-8
Wright, D.H. (1983) Species-energy theory: an extension of species-area theory. Oikos, 41, 496–506. https://doi.org/10.2307/3544109