Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-12-15
Page range: 53-64
Abstract views: 364
PDF downloaded: 30

First record of Cnemidochroma phyllopus (Coleoptera: Cerambycidae) in the province of Corrientes, Argentina and potential distribution in the southern part of South America

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Corrientes 3400. 2Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5470. (3400) Corrientes, Argentina.
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Corrientes 3400. 2Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5470. (3400) Corrientes, Argentina.
Departamento de Zoologia, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
Museu Nacional, Universidade Federal de Rio de Janeiro, Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil. 8Fellow of the Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq.
Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5470. (3400) Corrientes, Argentina.
Coleoptera Long horned beetle Callichromatini Species distribution model (SDM) Maxent

Abstract

Cnemidochroma Schmidt, 1924, a small genus of the tribe Callichromatini endemic in South America, comprises six species of which the only one recorded in Paraguay, Uruguay, Argentina and Brazil is C. phyllopus (Guérin-Méneville, 1844). The aim of this study was to estimate potential suitable areas for C. phyllopus to provide further knowledge on its current distribution. A dataset of 43 records was compiled and species distribution modelling was employed linking these occurrences with bioclimatic variables. Results indicate higher suitability conditions along the Atlantic coast of Brazil, reaching north Uruguay and extending inland to Paraguay and northern parts of Argentina. In addition, we report a new distributional record from Corrientes, Argentina.

 

References

  1. Aide, T.M., Clark, M.L., Grau, H.R., López-Carr, D., Levy, M., Redo, D., Bonilla-Moheno, M., Riner, G., Andrade-Núñez, M.J. & Muñiz, M. (2013) Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica, 45 (2), 262–271. https://doi.org/10.1111/j.1744-7429.2012.00908.x
    Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B. & Anderson, R.P. (2015) spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541–545. https://doi.org/10.1111/ecog.01132
    Akpan, G.E., Adepoju, K.A., Oladosu, O.R. & Adelabu, S.A. (2018) Dominant malaria vector species in Nigeria: Modelling potential distribution of Anopheles gambiae sensu lato and its siblings with MaxEnt. PLOS ONE, 13, e0204233. https://doi.org/10.1371/journal.pone.0204233
    Alves-Araújo, A., Swenson, U. & Alves, M. (2014) A taxonomic survey of Pouteria (Sapotaceae) from the northern portion of the Atlantic Rainforest of Brazil. Systematic Botany, 39, 915–938. https://doi.org/10.1600/036364414X681428
    Anderson, R.P., Lew, D. & Peterson, A.T. (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological modelling, 162, 211–232. https://doi.org/10.1016/s0304-3800(02)00349-6
    Araújo, M.B. & Peterson, A.T. (2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 1527–1539. https://doi.org/10.1890/11-1930.1
    Bachmann, A. & Di Iorio, O. (2002) Types and related specimens of Cerambycidae and Disteniidae (Coleoptera) in the Museo Argentino de Ciencias Naturales” Bernardino Rivadavia”, Buenos Aires, Argentina. Revista del Museo Argentino de Ciencias Naturales, Nueva Serie, 4, 55–93.
    Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón J. & Villalobos, F. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222, 1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011
    Baucke, O. (1955) Catálogo dos insetos encontrados no Rio Grande do Sul, Col., Cerambycidae. Boletim da Secretaria de Agricultura Industria e Comercio, Porto Alegre, 1, 1–87.
    Beaumont, L.J., Gallagher, R.V, Thuiller, W., Downey, P.O., Leishman, M.R. & Hughes, L. (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distributions, 15, 409–420. https://doi.org/10.1111/j.1472-4642.2008.00547.x
    Berkov, A. (2018) Seasonality and stratification: neotropical saproxylic beetles respond to a heat and moisture continuum with conservatism and plasticity. In: Ulyshen, M.D. (Ed.), Saproxylic insects: diversity, ecology and conservation. Springer, Heidelberg, pp. 547–578.
    Biezanko, C.M. & Bosq, J.M. (1956) Cerambycidae de Pelotas e seus arredores. Agros, Pelotas, 10, 3–15.
    Bosq, J.M. & Ruffinelli, A. (1951) Notas para el catálogo de los Cerambícidos del Uruguay. Comunicaciones Zoológicas del Museo de Historia Natural, 3, 1–32.
    Buck, P. (1959) Cerambycidae in der Sammlung des Instituto Anchietano de Pesquisas. Pesquisas, 3, 577–609.
    Campbell, L.P., Luther, C., Moo-Llanes, D., Ramsey, J.M., Danis-Lozano, R. & Peterson, A.T. (2015) Climate change influences on global distributions of dengue and chikungunya virus vectors. Philosophical Transactions of the Royal Society B, 370, 20140135. https://doi.org/10.1098/rstb.2014.0135
    Cobos, M.E., Peterson, A.T., Barve, N. & Osorio-Olvera, L. (2019) kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7, e6281. https://doi.org/10.7717/peerj.6281
    Cobos, M.E., Osorio-Olvera, L., Soberon, J., Peterson, A.T., Barve, V. & Barve, N. (2020) ellipsenm: Ecological Niche’s Characterizations Using Ellipsoids. R package version 0.3.4. Available from: https://github.com/marlonecobos/ellipsenm (accessed 19 July 2021)
    Demets, Y. (1974) Notes sur les Callichromatini (Coleoptera, Cerambycidae). III. Étude preliminaire du genre Cnemidochroma Schmidt, 1924. Papéis Avulsos de Zoologia, 28, 91–104.
    de Siqueira, M.F., Durigan, G., de Marco Júnior, P. & Peterson, A.T. (2009) Something from nothing: Using landscape similarity and ecological niche modeling to find rare plant species. Journal for Nature Conservation, 17, 25–32. https://doi.org/10.1016/j.jnc.2008.11.001
    Di Iorio, O.R. (2005) A field guide of longhorned beetles from Argentina (Coleoptera, Cerambycidae). Digital Tech, Buenos Aires, 188 pp.
    Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S. & Zimmermann, N.E. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
    Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
    Fassbender, J.L. (2013) Diversity, resource partitioning, and species turnover in Neotropical saproxylic beetles (Coleoptera: Cerambycidae, Curculionidae) associated with trees in the Brazil nut family (Lecythidaceae). PhD dissertation, City University of New York, New York, New York, 139 pp.
    Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International journal of climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086
    Flora del Conosur (2019) Available from: http://www.darwin.edu.ar/Proyectos/ FloraArgentina/DetalleEspecie.asp?forma=&variedad=&subespecie=&especie=brasiliensis&genero=Dorstenia&es pcod=25420 (accessed 19 July 2021)
    GBIF.org (2020) Global Biodiversity Information Facility. Available from: https://doi.org/10.15468/dl.d9czfc (accessed 19 July 2021)
    Godown, M.E. & Peterson, A.T. (2000) Preliminary distributional analysis of US endangered bird species. Biodiversity and Conservation, 9, 1313–1322. https://doi.org/10.1023/A:1008924322405
    Google (2019) Google Earth Pro. Version 7.3.2.5776. (accessed 19 July 2021)
    Guisan, A. & Thuiller, W. (2005) Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
    Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I.T., Regan, T.J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., Martin, T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., Schwartz, M.W., Wintle, B.A., Broennimann, O., Austin, M., Ferrier, S., Kearney, M.R., Possingham, H.P. & Buckley, Y.M. (2013) Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424–1435. https://doi.org/10.1111/ele.12189
    Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.
    Haack, R.A. (2017) Feeding biology of cerambycids. In: Wang, Q. (Ed.), Cerambycidae of the world. Biology and pest management. CRC Press, Boca Raton, Florida, pp. 105–124.
    Hadley, A. (2014) CombineZM, Image Stacking Software. Available from: http://combinezm.en.lo4d.com/ (accessed 19 July 2021)
    Herborg, L.M., O’Hara, P. & Therriault, T.W. (2009) Forecasting the potential distribution of the invasive tunicate Didemnum vexillum. Journal of Applied Ecology, 46, 64–72. https://doi.org/10.1111/j.1365-2664.2008.01568.x
    Hijmans, R.J. (2020) raster: Geographic Data Analysis and Modeling. R package version 3.4-5. Available from: https://CRAN.R-project.org/package=raster (accessed 19 July 2021)
    Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. (2020) dismo: Species Distribution Modeling. R package. Version 1.3-3. Available from: https://CRAN.R-project.org/package=dismo (accessed 19 July 2021)
    Holdefer, D.R., Sartor, V. & Mello-García, F.R. (2014) Flutuação Populacional De Espécies Predominantes De Cerambycidae Em Mata Atlântica Do Sul Do Brasil. Interciencia, 39, 745–750.
    Kamino, L.H.Y., de Siqueira, M.F., Sánchez-Tapia, A. & Stehmann, J.R. (2012) Reassessment of the Extinction Risk of Endemic Epecies in the Neotropics: How can Modelling Tools Help us? Natureza & Conservação, 10, 191–198. https://doi.org/10.4322/natcon.2012.033
    Löwenberg-Neto, P. (2014) Neotropical region: A shapefile of Morrone’s (2014) biogeographical regionalization. Zootaxa, 3802 (2), 300. https://doi.org/10.11646/zootaxa.3802.2.12
    López-Cárdenas, J., Bravo, F.E.G., Schettino, P.M.S., Solorzano, J.C.G., Barba, E.R., Mendez, J.M., Sánchez-Cordero, V., Townsend Peterson, A. & Ramsey, J.M. (2005) Fine-Scale Predictions of Distributions of Chagas Disease Vectors in the State of Guanajuato, Mexico. Journal of Medical Entomology, 42, 1068–1081. https://doi.org/10.1093/jmedent/42.6.1068
    Martins, U.R. (2009) Cerambycidae Sul-Americanos (Coleoptera). Taxonomía, Vol. 10. Cerambycinae: Ibidionini: Compsina/Eligmodermini, Ideratini, Callichromatini. Sociedade Brasileira de Entomologia, São Paulo, 373 pp.
    Matteucci, S.D. (2012) Ecorregión Esteros del Iberá. In: Matteucci, S.D., Morello, J., Matteucci, S.D., Rodríguez, A.F. & Silva, M.E. (Eds.), Ecorregiones y complejos ecosistémicos argentinos. Orientación Gráfica Editora, Buenos Aires, pp. 293–308.
    Merow, C., Smith, M.J. & Silander, J.A. (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
    Monné, M.A. (2017) Catalogue of the Cerambycidae (Coleoptera) of the Neotropical Region. Part I. Subfamily Cerambycinae. Rio de Janeiro, RJ, Brazil, 669 pp. Available from https://cerambycidae.cl/bibliografia.htm (accessed 19 July 2021)
    Monné, M.A. (2021) Catalogue of the Cerambycidae (Coleoptera) of the Neotropical Region. Part I. Subfamily Cerambycinae. Rio de Janeiro, 1119 pp. Available from https://cerambycids.com/catalog/ (accessed 19 July 2021)
    Morrone, J.J. (2014) Biogeographical regionalisation of the Neotropical region. Zootaxa, 3782 (1), 1–110. https://doi.org/10.11646/zootaxa.3782.1.1
    Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J.M., Uriarte, M. & Anderson, R.P. (2014) ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in ecology and evolution, 5, 1198–1205. https://doi.org/10.1111/2041-210X.12261
    Nascimento, F.E.L. & Bravo, F. (2014) Espécies de Cerambycidae (Coleoptera) coletadas nas expedições do PPBio Semiárido. In: Bravo, F. & Calor, A. (Eds.), Artrópodes do Semiárido, biodiversidade e conservação. Printmidia, Feira de Santana, pp. 127–138. https://doi.org/10.1007/s13398-014-0173-7.2
    Nearns, E.H., Lord, N.P., Lingafelter, S.W., Santos-Silva, A., Miller, K.B. & Zaspel, J.M. (2019) Longicorn ID: Tool for Diagnosing Cerambycoid Families, Subfamilies, and Tribes. Longicorn ID: Tool for Diagnosing Cerambycoid Families, Subfamilies, and Tribes. Available from: https://cerambycids.com/longicornid/ (accessed 19 July 2021)
    Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D’amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P. & Kassem, K.R. (2001) Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience, 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
    Owens, H.L., Campbell, L.P., Dornak, L.L., Saupe, E.E., Barve, N., Soberón, J., Ingenloff, K., Lira-Noriega, A., Hensz, C.M., Myers, C.E. & Peterson, A.T. (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological modelling, 263, 10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011
    Parviainen, M., Marmion, M., Luoto, M., Thuiller, W. & Heikkinen, R.K. (2009) Using summed individual species models and state-of-the-art modelling techniques to identify threatened plant species hotspots. Biological Conservation, 142, 2501–2509. https://doi.org/10.1016/j.biocon.2009.05.030
    Peterson, A.T. (2001) Predicting species’ geographic distributions based on ecological niche modeling. The Condor, 103, 599–605. https://doi.org/10.1650/0010-5422(2001)103[0599:PSGDBO]2.0.CO;2
    Peterson, A.T., Martínez-Campos, C., Nakazawa, Y. & Martínez-Meyer, E. (2005) Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Transactions of the Royal Society of Tropical Medicine and Hygiene, 99, 647–655. https://doi.org/10.1016/j.trstmh.2005.02.004
    Peterson, A.T., Papeş, M. & Soberón, J. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological modelling, 213, 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
    Peterson, A.T., Soberon, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M. & Araújo, M.B. (2011) Ecological Niches and Geographic Distributions. Princeton University Press, Princeton and Oxford, 315 pp.
    Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026 
    Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E. & Blair, M.E. (2017) Opening the black box: An open-source release of Maxent. Ecography, 40, 887–893. https://doi.org/10.1111/ecog.03049
    Piza, S.T.J. (1968) Insetos de Piracicaba. Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, 123 pp.
    QGIS Development Team (2021) QGIS. Available from: http://qgis.osgeo.org (accessed 19 July 2021)
    Roura-Pascual, N., Suarez, A.V., Gómez, C., Pons, P., Touyama, Y., Wild, A.L. & Peterson, A.T. (2004) Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proceedings of the Royal Society B: Biological Sciences, 271, 2527–2534. https://doi.org/10.1098/rspb.2004.2898
    RStudio Team (2020) RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. Available from: http://www.rstudio.com/ (accessed 19 July 2021)
    Samy, A.M., Elaagip, A.H., Kenawy, M.A., Ayres, C.F.J., Peterson, A.T. & Soliman, D.E. (2016) Climate Change Influences on the Global Potential Distribution of the Mosquito Culex quinquefasciatus, Vector of West Nile Virus and Lymphatic Filariasis. PLOS ONE, 11, e0163863. https://doi.org/10.1371/journal.pone.0163863
    Sánchez-Tapia, A., Garbin, M.L., Siqueira, M.F., Guidoni-Martins, K.G., Scarano, F.R. & Carrijo, T.T. (2018) Environmental and geographical space partitioning between core and peripheral Myrsine species (Primulaceae) of the Brazilian Atlantic Forest. Botanical Journal of the Linnean Society, 187, 633–652. https://doi.org/10.1093/botlinnean/boy034
    Schmidt, M. (1924) Die amerikanischen Callichrominen (col ceramb.) nach systematischen und phylogenetischen Gesichtspunkten dargestellt. Berliner entomologische Zeitschrift, 4, 378–396.
    Simões, M., Romero-Alvarez, D., Nuñez-Penichet, C., Jiménez, L. & Cobos, M.E. (2020) General theory and good practices in ecological niche modeling: a basic guide. Biodiversity Informatics, 15, 67–68. https://doi.org/10.17161/bi.v15i2.13376
    Soberon, J. & Peterson, A.T. (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1–10. https://doi.org/10.17161/bi.v2i0.4
    Tavakilian, G. & Chevillotte, H. (2021) Titan: base de données internationales sur les Cerambycidae ou Longicornes. Version 4.0. http://titan.gbif.fr/index.html (accessed 19 July 2021)
    Warren, D.L. & Seifert, S.N. (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21, 335–342. https://doi.org/10.1890/10-1171.1
    Zajciw, D. & Monné, M.A. (1968) Cerambícidos del Uruguay, nuevos o poco conocidos. Revista de la Sociedad Uruguaya de Entomologia, 7, 51–61.
    Zikán, J.F. & Zikán, W. (1944) A inseto-fauna do Itatiaia e da Mantiqueira. Boletin do Ministerio de Agricultura, 33, 1–50.
    Zunino, M. & Zullini, A. (2003) Biogeografía: La dimensión espacial de la evolución. Fondo de Cultura Económica, México, D.F., 359 pp.