Abstract
For the genus Diaphanosoma Fischer (Cladocera) the species’ name “D. brachyurum” has been widely used for many decades to identify other species belonging to this genus. To clarify the diversity of the genus in Greek lakes in the present study, we morphologically and genetically identified the Diaphanosoma species occurring in eight lakes. Three hundred twenty-nine Diaphanosoma individuals were morphologically examined, while for the genetic analyses the mtDNA COI gene was sequenced in 48 individuals. Combining the morphological and genetic results, we verified the occurrence of D. mongolianum, D. orghidani and D. macedonicum in our study area. We could not confirm prior records of D. brachyurum and D. lacustris while we provide the molecular identity of D. macedonicum. Furthermore, we highlight the need to check whether the European D. mongolianum populations are characterised of mitochondrial discordance and hybridization as the individuals from the Asian type locality of the species. Our results support the importance of combining both approaches to correctly identify taxonomic species, despite the extra effort and cost during the sample analysis.
References
Bekker, E.I., Karabanov, D.P., Galimov, Y.R. & Kotov, A.A. (2016) DNA Barcoding Reveals High Cryptic Diversity in the North Eurasian Moina Species (Crustacea: Cladocera). PLoS One, 11, e0161737. https://doi.org/10.1371/journal.pone.0161737
Belaiba, E., Marrone, F., Vecchioni, L., Bahri-Sfar, L. & Arculeo, M. (2019) An exhaustive phylogeny of the combtooth blenny genus Salaria (Pisces, Blenniidae) shows introgressive hybridization and lack of reciprocal mtDNA monophyly between the marine species Salaria basilisca and Salaria pavo. Molecular Phylogenetics and Evolution, 35, 210–221. https://doi.org/10.1016/j.ympev.2019.02.026
Brown, W.M. (1985) The mitochondrial genome of animals. In: MacIntyre R.J. (Ed.), Molecular Evolutionary Genetics. Plenum, New York, pp. 399–411.
Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModeltest 2: more models, new heuristics and parallel computing. Nature methods, 9 (8), 772–772.
de Jong, Y., Verbeek, M., Michelsen, V., Bjørn, P. de P., Los, W., Steeman, F., Bailly, N., Basire, C., Chylarecki, P., Stloukal, E., Hagedorn, G., Wetzel, F.T., Glöckler, F., Kroupa, A., Korb, G., Hoffmann, A., Häuser, C., Kohlbecker, A., Müller, A., Güntsch, A., Stoev, P. & Penev, L. (2014) Fauna Europaea—all European animal species on the web. Biodiversity Data Journal, 2, e4034. https://doi.org/10.3897/BDJ.2.e4034
Dumont, H.J., Han, B.-P., Guo, F.F., Chen, H., Cheng, D., Liu, P., Xu, L., Sanoamuang, L.-O., Rietzler, A.C., Xu, S., Vierstraete, A. & Elias-Gutierrez, M. (2021) Toward a phylogeny and biogeography of Diaphanosoma (Crustacea: Cladocera). Aquatic Ecology, 55, 1207–1222.
https://doi.org/10.1007/s10452-020-09819-0
Dumont, H.J. & Negrea, S.V. (2002) Introduction to the class Branchiopoda. In: Dumont, H.J. (Ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Vol. 19. Backhuys Publishers, Leiden, pp. 1–397.
Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.
EEA European Environmental Agency (2017) Biogeographical regions in Europe. Available from: https://www.eea.europa.eu/data-and-maps/figures/biogeographical-regions-in-europe-2 (accessed 29 March 2021)
Ejsmont-Karabin, J. (2019) Does the world need faunists? Based on rotifer (Rotifera) occurrence reflections on the role of faunistic research in ecology. International Review of Hydrobiology, 104, 49–56. https://doi.org/10.1002/iroh.201901991
Elias-Gutierrez, M., Jerónimo, F.M., Ivanova, N.V., Valdez-Moreno, M. & Hebert, P.D.N. (2008) DNA barcodes for Cladocera and Copepoda from Mexico and Guatemala, highlights and new discoveries. Zootaxa, 1839 (1), 1–42. https://doi.org/10.11646/zootaxa.1839.1.1
Estoup, A., Largiader, C.R., Perrot, E. & Chourrout, D. (1996) Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Molecular Marine Biology and Biotechnology, 5, 295–298.
Finné, M., Holmgren, K., Sundqvist, H.S., Weiberg, E. & Lindblom, M. (2011) Climate in the eastern Mediterranean, and adjacent regions, during the past 6000 years–A review. Journal of Archaeological Science, 38 (12), 3153–3173.
Forró, L., Korovchinsky, N.M., Kotov, A.A. & Petrusek, A. (2008) Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia, 595, 177–184. https://doi.org/10.1007/s10750-007-9013-5
Geller, J., Meyer, C., Parker, M. & Hawk, H. (2013) Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources, 13, 851–861. https://doi.org/10.1111/1755-0998.12138
Geller, W. & Müller, H. (1981) The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia, 49, 316–321. https://doi.org/10.1007/BF00347591
Godfray, H.C.J. (2002) Challenges for taxonomy. Nature, 417, 17–19. https://doi.org/10.1038/417017a
Guindon, S. & Gascuel, O. (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.
Guseska, D., Tasevska, O., Kostoski, G. & Guseski, D. (2013) Biomass of pelagic Crustacea: Cladocera in the Lake Ohrid (Macedonia) for the period 2000-2009. Natura Montenegrina, Podgorica, 12, 855–862.
Hebert, P.D.N., Ratnasingham, S. & de Waard, J.R. (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270, S96–S99. https://doi.org/10.1098/rsbl.2003.0025
Ivanets, O.R. (2017) Fauna, ecological and morphological characteristics of family Sididae, Baird, 1850 (Crustacea: Cladocera: Ctenopoda) of Ukrainian Roztocze. Science and Education a New Dimension, 148, 19–21. https://doi.org/10.31174/SEND-NT2017-148V16-04
Katsiapi, M., Giannopoulou, H., Almpanidou, V., Mazaris, A, Michaloudi, E., Moustaka Gouni, M. (2016) Ecological water quality and connectivity of Prespa lakes. In: Vokou, D. (Ed.), Proceedings, 8th Congress of the Hellenic Ecological Society: 150+ Years of Ecology—Structures, Dynamics and Survival Strategies. Hellenic Ecological Society, Thessaloniki, pp. 272.
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/BF01731581
Kořínek, V. (1981) Diaphanosoma birgei n.sp. (Crustacea, Cladocera). A new species from America and its widely distributed subspecies Diaphanosoma birgei ssp. lacustris n.ssp. Canadian Journal of Zoology, 59, 1115–1121. https://doi.org/10.1139/z81-155
Kořínek, V. (1987) Revision of three species of the genus Diaphanosoma Fischer, 1850. Hydrobiologia, 145, 35–45. https://doi.org/10.1007/978-94-009-4039-0_5
Korovchinsky, N.M. (1986) Izmenchivost, systematica, rasprostranenije Diaphanosoma orghidani i opisanie D. orientalis. Zoologicheskiĭ Zhurnal, 65, 208–220.
Korovchinsky, N.M. (1987) A study of Diaphanosoma species (Crustacea: Cladocera) of the ‘mongolianum’ group. Internationale Revue der gesamten Hydrobiologie, 72, 727–758. https://doi.org/10.1002/iroh.19870720609
Korovchinsky, N.M. (1992) Sididae & Holopediidae (Crustacea: Daphniiformes). In: Dumont H.J.F (Ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Vol. 3. SPB Academic Publishing, The Hague, pp. 89. https://doi.org/10.13140/2.1.2235.1040
Korovchinsky, N.M. (2000) Species richness of pelagic Cladocera of large lakes in the eastern hemisphere. Hydrobiologia, 434, 41–54. https://doi.org/10.1023/A:1004039523169
Korovchinsky, N.M. (2018) Cladocera: Ctenopoda: Families Sididae, Holopediidae & Pseudopenilidae (Branchiopoda: Cladocera). In: Dumont H.J.F (Ed.), Identification Guides to the Plankton and Benthos of Inland Waters 27. Backhuys Publishers and Margraf Publishers, Weikersheim, pp. 203.
Korovchinsky, N.M. & Petkovski, T.K. (2014) The ancient Balkan lakes harbor a new endemic species of Diaphanosoma Fischer, 1850 (Crustacea: Branchiopoda: Cladocera). Zootaxa, 3784 (5), 539–549. https://doi.org/10.11646/zootaxa.3784.5.3
Koussouris, T.S., Diapoulis, A.C. & Photis, G.D. (1991) Evaluating the trophic status of a shallow polluted lake, Lake Ioannina, Greece. Toxicological & Environmental Chemistry, 31, 303–313. https://doi.org/10.1080/02772249109357702
Lakatos, C., Urabe, J. & Makino, W. (2015) Cryptic diversity of Japanese Diaphanosoma (Crustacea: Cladocera) revealed by morphological and molecular assessments. Inland Waters, 5, 253–262. https://doi.org/10.5268/IW-5.3.847
Lampert, W. & Sommer, U. (2007) Limnoecology: The Ecology of Lakes and Streams. Oxford University Press, Oxford, 324 pp. https://doi.org/10.1093/plankt/fbn013
Liu, P., Xu, L., Xu, S.-L., Martínez, A., Chen, H., Cheng, D., Dumont, H.J., Han, B.-P. & Fontaneto, D. (2018) Species and hybrids in the genus Diaphanosoma Fischer, 1850 (Crustacea: Branchiopoda: Cladocera). Molecular Phylogenetics and Evolution, 118, 369–378. https://doi.org/10.1016/j.ympev.2017.10.016
Makino, W., Machida R.J., Okitsu, J. & Usio, N. (2020) Underestimated species diversity and hidden habitat preference in Moina (Crustacea, Cladocera) revealed by integrative taxonomy. Hydrobiologia, 847, 857–878. https://doi.org/10.1007/s10750-019-04147-3
Matzafleri, N., Psilovikos, A. & Sentas, A. (2017) Zooplankton population seasonal variations in relation to nutrients. Case study of Lake Kastoria, Western Macedonia, Greece. Fresenius Environmental Bulletin, 26, 1318–1326.
Michaloudi, E., Papakostas, S., Stamou, G., Neděla, V., Tihlaříková, E., Zhang, W. & Declerck, S.A.J. (2018) Reverse taxonomy applied to the Brachionus calyciflorus cryptic species complex: morphometric analysis confirms species delimitations revealed by molecular phylogenetic analysis and allows the (re) description of four species. PLoS One, 13, e0203168. https://doi.org/10.1371/journal.pone.0203168
Moustaka-Gouni, M., Vardaka, E., Michaloudi, E., Kormas, K.A., Tryfon, E., Mihalatou, H., Gkelis, S. & Lanaras, T. (2006) Plankton food web structure in a eutrophic polymictic lake with a history of toxic cyanobacterial blooms. Limnology and Oceanography, 51, 715–727. https://doi.org/10.4319/lo.2006.51.1_part_2.0715
Müller, J. & Seitz, A. (1995) Differences in allozyme patterns between Diaphanosoma brachyurum and Diaphanosoma mongolianum, as revealed in Central European populations. Hydrobiologia, 312, 107–114. https://doi.org/10.1007/BF00020766
Negrea, S. (1982) Révision des épèces de Diaphanosoma (Cladocera, Sididae) de Roumanie et description de D. orghidani sp. n. Travaux du Museum National d’Histoire Naturelle Grigore Antipa, 24, 29–43.
Papakostas, S., Michaloudi, E., Proios, K., Brehm, M., Verhage, L., Rota, J., Peña, C., Stamou, G., Pritchard, V.L., Fontaneto, D. & Declerck, S.A.J. (2016) Integrative taxonomy recognizes evolutionary units despite widespread mitonuclear discordance: evidence from a rotifer cryptic species complex. Systematic Biology, 65, 508–524. https://doi.org/10.1093/sysbio/syw016
Papakostas, S., Triantafyllidis, A., Kappas, I. & Abatzopoulos, T.J. (2005) The utility of the 16S gene in investigating cryptic speciation within the Brachionus plicatilis species complex. Marine Biology, 147, 1129–1139. https://doi.org/10.1007/s00227-005-0012-7
Prosser, S., Martínez-Arce, A. & Elías-Gutiérrez, M. (2013) A new set of primers for COI amplification from freshwater microcrustaceans. Molecular Ecology Resources, 13 (6), 1151–1155. https://doi.org/10.1111/1755-0998.12132
Puillandre, N., Lambert, A., Brouillet, S., Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x.
Richter, S., Olesen, J. & Wheeler, W.C. (2007) Phylogeny of Branchiopoda (Crustacea) based on a combined analysis of morphological data and six molecular loci. Cladistics, 23, 301–336. https://doi.org/10.1111/j.1096-0031.2007.00148.x
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E. & Sánchez-Gracia, A. (2017) DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Society for Molecular Biology and Evolution, 34, 3299–3302. https://doi.org/10.1093/molbev/msx248.
Sullivan, J.P., Lavoué, S., Arnegard, M.E. & Hopkins, C.D. (2004) AFLPs resolve phylogeny and reveal mitochondrial introgression within a species flock of African electric fish (Mormyroidea: Teleostei). Evolution, 58, 825–841. https://doi.org/10.1554/03-313
Török, L. & Radu, A. (2007) The analysis of the records of zooplankton species from the Danube Delta Biosphere Reserve. Scientific Annals of the Danube Delta Institute, 13, 111–122.
Waugh, J. (2007) DNA barcoding in animal species: progress, potential and pitfalls. BioEssays, 29, 188–197. https://doi.org/10.1002/bies.20529
Zuykova, E.I., Simonov, E.P., Bochkarev N.A., Taylor, D.J. & Kotov, A.A. (2018) Resolution of the Daphnia umbra problem (Crustacea:Cladocera) using an integrated taxonomic approach. Zoological Journal of the Linnean Society, 184, 969–998.