Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-06-28
Page range: 1-22
Abstract views: 912
PDF downloaded: 390

A novel symbiotic relationship between ascidians and a new tunic-boring polychaete (Annelida: Spionidae: Polydora)

Faculty of Science and Engineering, Ishinomaki Senshu University, Shinmito 1, Minamisakai, Ishinomaki, Miyagi 986-8580, Japan
Diving Service Chap, Okada Shinkai 118-2, Oshima-cho, Izu-Oshima, Tokyo 100-0102, Japan.
Freelancer of Benthos Worker, Nishi Narashino 3-20-3-101, Funabashi-shi, Chiba 274-0815, Japan.
Regional Fish Institute, Ltd., Yoshida-Honmachi 36-1, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan.
Aquatic Ecology Division, Estuary Research Center, Shimane University, Nishikawatsu-cho 1060, Matsue-shi, Shimane 690–8504, Japan.
Laboratory of Biological Oceanography, Graduate School of Agricultural Science, Tohoku University, Aramaki-Aza-Aoba 468-1, Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan.
Annelida cellulase activity commensalism Cnemidocarpa Polycarpa Polydora tunicola sp. nov.

Abstract

Polydora tunicola Abe, Hoshino & Yamada, sp. nov., a new spionid species currently considered an obligate symbiont of styelid ascidians, is described based on materials collected from Polycarpa cf. cryptocarpa kroboja (Oka, 1906) and Cnemidocarpa sp. in Izu-Oshima Island and Polycarpa sp. in Wakayama Prefecture, Japan. Polychaete–ascidian symbiotic relationships are known only in two syllid species: Myrianida pinnigera (Montagu, 1808) and Proceraea exoryxae Martin, Nygren & Cruz-Rivera, 2017. The latter has been the only polychaete known to bore into the tunic of an ascidian. Polydora tunicola sp. nov. is the second known example of a tunic-boring polychaete, which constructs U-shaped burrows in the tunic of the host ascidians. Worms were often concentrated near the host siphons and assumed to use water currents created by the filter-feeding host for suspension feeding. Although the boring mechanism into ascidian tunica is unknown, the plate assay and zymography results consistently detected cellulase activities, suggesting that cellulose digestion may enable the worms to bore into the cellulose-rich ascidian tunics. Polydora tunicola sp. nov. is morphologically similar to P. aura Sato-Okoshi, 1998, P. cornuta Bosc, 1802, P. fusca Radashevsky & Hsieh, 2000, P. glycymerica Radashevsky, 1993, P. latispinosa Blake & Kudenov, 1978, P. lingulicola Abe & Sato-Okoshi, 2020, P. nanomon Orensky & Williams, 2009, P. robi Williams, 2000, and P. vulgaris Mohammad, 1972 in having a single median antenna on the caruncle and chaetiger 5 without dorsal superior capillaries but with ventral capillaries. The new species is unique in having a black-rimmed pygidium, distinguishing it from these species. The phylogenetic analyses of the concatenated 18S, 28S, and 16S sequences recovered P. tunicola sp. nov. as the sister species to P. aura within a well-supported clade also including P. lingulicola and P. cf. glycymerica. The bright yellow body color of P. tunicola sp. nov. in life is similar to that of P. aura, however, these two species are distinguished by the former not having modified posterior notochaetae. The symbiotic nature of the association between P. tunicola sp. nov. and styelid ascidians is discussed.

 

References

  1. Abe, H. & Sato-Okoshi, W. (2020) Novel symbiotic relationship between a spionid polychaete and Lingula (Brachiopoda: Lingulata: Lingulidae), with description of Polydora lingulicola sp. nov. (Annelida: Spionidae). Zoosymposia, 19, 103–120. https://doi.org/10.11646/zoosymposia.19.1.13
    Abe, H. & Sato-Okoshi, W. (2021) Molecular identification and larval morphology of spionid polychaetes (Annelida, Spionidae) from northeastern Japan. ZooKeys, 1015, 1–86. https://doi.org/10.3897/zookeys.1015.54387
    Abe, H., Takeuchi, T., Taru, M., Sato-Okoshi, W. & Okoshi, K. (2019) Habitat availability determines distribution patterns of spionid polychaetes (Annelida: Spionidae) around Tokyo Bay. Marine Biodiversity Records, 12, 7. https://doi.org/10.1186/s41200-019-0167-4
    Anisimova, M., Gil, M., Dufayard, J.F., Dessimoz, C. & Gascuel, O. (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Systematic Biology, 60 (5), 685–699. https://doi.org/10.1093/sysbio/syr041
    Baeza, J.A. & Díaz-Valdés, M. (2011) The symbiotic shrimp Ascidonia flavomaculata lives solitarily in the tunicate Ascidia mentula: implications for its mating system. Invertebrate Biology, 130 (4), 351–361. [https://www.jstor.org/stable/41408397] https://doi.org/10.1111/j.1744-7410.2011.00244.x
    Béguin, P. (1983) Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Analytical Biochemistry, 131 (2), 333–336. https://doi.org/10.1016/0003-2697(83)90178-1
    Bertasi, F. (2016) The occurrence of the alien species Polydora cornuta Bosc, 1802 (Polychaeta: Spionidae) in North Adriatic lagoons: an overlooked presence. Italian Journal of Zoology, 83 (1), 77–88. https://doi.org/10.1080/11250003.2016.1140839
    Blake, J.A. (1969) Systematics and ecology of shell-boring polychaetes from New England. American Zoologist, 9 (3), 813–820.
    https://doi.org/10.1093/icb/9.3.813
    Blake, J.A. & Arnofsky, P.L. (1999) Reproduction and larval development of the spioniform Polychaeta with application to systematics and phylogeny. Hydrobiologia, 402, 57–106. https://doi.org/10.1023/A:1003784324125
    Blake, J.A. & Evans, J.W. (1973) Polydora and related genera as borers in mollusk shells and other calcareous substrates. The Veliger, 15 (3), 235–249. [https://www.biodiversitylibrary.org/page/42397284]
    Blake, J.A. & Kudenov, J.D. (1978) The Spionidae (Polychaeta) from southeastern Australia and adjacent areas with a revision of the genera. Memoirs of the National Museum of Victoria, 39, 171–280. [https://www.biodiversitylibrary.org/page/39441579] https://doi.org/10.24199/j.mmv.1978.39.11
    Blake, J.A. & Maciolek, N.J. (1987) A redescription of Polydora cornuta Bosc (Polychaeta: Spionidae) and designation of a neotype. Bulletin of the Biological Society of Washington, 7, 11–15.
    Blake, J.A., Maciolek, N.J. & Meißner, K. (2020) 7.4.1 Spionidae Grube, 1850. In: Purschke, G., Böggemann, M. & Westheide, W. (Eds.), Handbook of Zoology. Annelida. Vol. 2. Pleistoannelida, Sedentaria II. De Gruyter, Berlin, pp. 1–103. https://doi.org/10.1515/9783110291681-001
    Bosc, L.A.G. (1802) Histoire naturelle des vers, contenant leur description et leurs moeurs; avec figures dessinées d'après nature. Vol 1. Guilleminet. Chez Deterville, Paris, 324 pp., 10 pls. https://doi.org/10.5962/bhl.title.64025
    Boxshall, G. (2005) Crustacean parasites: Copepoda (copepods). In: Rohde, K. (Ed.), Marine Parasitology. CABI Publishing, Wallingford, pp. 123–138. https://doi.org/10.1079/9780643090255.0123
    Cañete, J.I. & Rocha, R.M. (2013) Modiolarca lateralis (Pteryomorphia: Mytilidae): bivalve associated to six species of ascidians from Bocas del Toro, Panama. Latin American Journal of Aquatic Research, 41 (5), 1030–1035. https://doi.org/10.3856/vol41-issue5-fulltext-25
    Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17 (4), 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
    Drasche, R. (1884) Über einige neue und weniger gekannte aussereuropäische einfache Ascidien. Denkschriften der Kaiserlichen Akademie der Wissenschaften, 48, 369–386.
    Dualan, I.V. & Williams, J.D. (2011) Palp growth, regeneration, and longevity of the obligate hermit crab symbiont Dipolydora commensalis (Annelida: Spionidae). Invertebrate Biology, 130, 264–276. https://doi.org/10.1111/j.1744-7410.2011.00234.x
    Gómez, J.M., Verdú, M. & Perfectti, F. (2010) Ecological interactions are evolutionarily conserved across the entire tree of life.Nature, 465, 918–921. https://doi.org/10.1038/nature09113
    Goto, R., Kawakita, A., Ishikawa, H., Hamamura, Y. & Kato, M. (2012) Molecular phylogeny of the bivalve superfamily Galeommatoidea reveals dynamic evolution of symbiotic lifestyle and interphylum host switching. BMC Evolutionary Biology, 12, 172. https://doi.org/10.1186/1471-2148-12-172
    Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59 (3), 307–321. https://doi.org/10.1093/sysbio/syq010
    Hartmeyer, R. (1906) Ein Beitrag zur Kenntnis der japanischen Ascidienfauna. Zoologischer Anzeiger, 31, 1–30.
    Herdman, W.A. (1881) Preliminary report on the Tunicata of the Challenger expedition. Cynthiidae. Proceeding of the Royal Society of Edinburgh, 11 (3), 52–88. https://www.biodiversitylibrary.org/page/48710941
    Hirose, E., Yamashiro, H. & Mori, Y. (2001) Properties of tunic acid in the ascidian Phallusia nigra (Ascidiidae, Phlebobranchia). Zoological Science, 18 (3), 309–314. https://doi.org/10.2108/zsj.18.309
    Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35 (2), 518–522. https://doi.org/10.1093/molbev/msx281
    Hoberg, E.P. & Brooks, D.R. (2008) A macroevolutionary mosaic: episodic host-switching, geographical colonization and diversification in complex host-parasite systems. Journal of Biogeography, 35, 1533–1550. https://doi.org/10.1111/j.1365-2699.2008.01951.x
    Horká, I., De Grave, S., Fransen, C.H.J.M., Petrusek, A. & Ďuriš, Z. (2016) Multiple host switching events shape the evolution of symbiotic palaemonid shrimps (Crustacea: Decapoda). Scientific Reports, 6, 26486. https://doi.org/10.1038/srep26486
    Illg, P.L. (1958) North American copepods of the family Notodelphyidae. Proceedings of the United States National Museum, 107 (3390), 463–659. [https://www.biodiversitylibrary.org/page/37075036] https://doi.org/10.5479/si.00963801.108-3390.463
    Ito, K., Nozaki, M., Ohta, T., Miura, C., Tozawa, Y. & Miura, T. (2011) Differences of two polychaete species reflected in enzyme activities. Marine Biology, 158, 1211–1221. https://doi.org/10.1007/s00227-011-1641-7
    Joullié, M.M., Leonard, M.S., Portonovo, P., Liang, B., Ding, X. & La Clair, J.J. (2003) Chemical defense in ascidians of the Didemnidae family. Bioconjugate Chemistry, 14 (1), 30–37. https://doi.org/10.1021/bc025576n
    Jumars, P.A., Dorgan, K.M. & Lindsay, S.M. (2015) Diet of worms emended: an update of polychaete feeding guilds. Annual Review of Marine Science, 7, 497–520. https://doi.org/10.1146/annurev-marine-010814-020007
    Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285
    Kanaya, G., Niiyama, T., Tanimura, A., Kimura, T., Toyohara, H., Tosuji, H. & Sato, M. (2018) Spatial and interspecific variation in the food sources of sympatric estuarine nereidid polychaetes: stable isotopic and enzymatic approaches. Marine Biology, 165, 101. https://doi.org/10.1007/s00227-018-3361-8
    Kanaya, G., Tanimura, A., Niiyama, T. & Toyohara, H. (2019) Cellulase activity and stable isotope signature of benthic macroinvertebrates in estuarine habitats: potential assimilation of land-derived organic matter. Plankton and Benthos Research, 14 (4), 315–319. https://doi.org/10.3800/pbr.14.315
    Katoh, K., Rozewicki, J. & Yamada, K.D. (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20 (4), 1160–1166. https://doi.org/10.1093/bib/bbx108
    Kim, I.-H., Cruz-Rivera, E., Sherif, M.-E.-D. & El-Sahhar, S. (2016) Cyclopoid copepods (Ascidicolidae, Notodelphyidae) associated with Phallusia nigra Savigny, 1816 (Ascidiacea) in the Red Sea: a new ascidicolid and first descriptions of the males from two notodelphyids. Journal of Crustacean Biology, 36 (4), 553–566. https://doi.org/10.1163/1937240X-00002439
    Koplovitz, G., McClintock, J.B., Amsler, C.D. & Baker, B.J. (2009) Palatability and chemical antipredatory defenses in common ascidians from the Antarctic Peninsula. Aquatic Biology, 7, 81–92. https://doi.org/10.3354/ab00188
    Kott, P. (2002) A complex didemnid ascidian from Whangamata, New Zealand. Journal of the Marine Biological Association of the UK, 82 (4), 625–628. https://doi.org/10.1017/s0025315402005970
    Kou, Q., Li, X.Z., Chan, T.Y. & Chu, K.H. (2015) Divergent evolutionary pathways and host shifts among the commensal pontoniine shrimps: a preliminary analysis based on selected Indo-Pacific species. Organisms Diversity & Evolution, 15, 369–377. https://doi.org/10.1007/s13127-014-0198-y
    Kudenov, J.D. (1982) Redescription of the major spines of Polydora ligni Webster (Polychaeta: Spionidae). Proceedings of the Biological Society of Washington, 95 (3), 571–574.
    Lambert, G. (2005) Ecology and natural history of the protochordates. Canadian Journal of Zoology, 83 (1), 34–50. https://doi.org/10.1139/z04-156
    Lanterbecq, D., Rouse, G.W. & Eeckhaut, I. (2010) Evidence for cospeciation events in the host–symbiont system involving crinoids (Echinodermata) and their obligate associates, the myzostomids (Myzostomida, Annelida). Molecular Phylogenetics and Evolution, 54 (2), 357–371. https://doi.org/10.1016/j.ympev.2009.08.011
    Lewis, D. & Whitney, P. (1968) Cellulase in Nereis virens. Nature, 220, 603–604. https://doi.org/10.1038/220603a0
    Lewis, D. (1980). Cellulase production in Sabella penicillus (Annelida: Polychaeta). Journal of the Marine Biological Association of the United Kingdom, 60 (4), 1069–1070. https://doi.org/10.1017/S0025315400042119
    Malan, A., Williams, J.D., Abe, H., Sato-Okoshi, W., Matthee, C.A. & Simon, C.A. (2020) Clarifying the cryptogenic species Polydora neocaeca (Annelida: Spionidae): a shell-boring invasive pest of molluscs from locations worldwide. Marine Biodiversity, 50, 51. https://doi.org/10.1007/s12526-020-01066-8
    Manchenko, G.P. & Radashevsky, V.I. (1994) Genetic differences between two allopatric sibling species of the genus Polydora (Polychaeta: Spionidae) from the West Pacific. Biochemical Systematics and Ecology, 22 (8), 767–773. https://doi.org/10.1016/0305-1978(94)90079-5
    Martin, D. & Britayev, T.A. (1998) Symbiotic polychaetes: review of known species. Oceanography and Marine Biology: An Annual Review, 36, 217–340. https://doi.org/10.1201/b12646
    Martin, D. & Britayev, T.A. (2018) Symbiotic polychaetes revisited: an update of the known species and relationships (1998–2017). Oceanography and Marine Biology: An Annual Review, 56, 371–448. https://doi.org/10.1201/9780429454455
    Martin, D., Nygren, A. & Cruz-Rivera, E. (2017) Proceraea exoryxae sp. nov. (Annelida, Syllidae, Autolytinae), the first known polychaete miner tunneling into the tunic of an ascidian. PeerJ, 5, e3374 https://doi.org/10.7717/peerj.3374
    McClintock, J.B., Amsler, M.O., Koplovitz, G., Amsler, C.D. & Baker, B.J. (2009) Observations on an association between the dexaminid amphipod Polycheria antarctica F. Acanthopoda and its ascidian host Distaplia cylindrica. Journal of Crustacean Biology, 29 (4),605–608. https://doi.org/10.1651/09-3146.1
    McClintock, J.B., Heine, J., Slattery, M. & Weston, J. (1991) Biochemical and energetic composition, population biology, and chemical defense of the Antarctic ascidian Cnemidocarpa verrucosa Lesson. Journal of Experimental Marine Biology and Ecology, 147 (2), 163–175. https://doi.org/10.1016/0022-0981(91)90180-5
    Millar, R.H. (1971) The biology of ascidians. Advances in Marine Biology, 9, 1–100. https://doi.org/10.1016/S0065-2881(08)60341-7
    Mohammad, M.-B.M. (1972) Infestation of the pearl oyster Pinctada margaritifera (Linne) by a new species of Polydora in Kuwait, Arabian Gulf. Hydrobiologia, 39, 463–477. https://doi.org/10.1007/BF00046740
    Monniot, C. (1990) Chapter 6: Diseases of Urochordata. In: Kinne, O. (Ed.), Diseases of Marine Animals. Vol. III. Introduction, Cephalopoda to Urochordata. Biologische Anstalt Helgoland, Hamburg, pp. 569–636.
    Monniot, F. & Monniot, C. (2001) Ascidians from the tropical western Pacific. Zoosystema, 23 (2), 201–383.
    Montagu, G. (1808) Description of several marine animals found on the south coast of Devonshire. Transactions of the Linnean Society of London, 9, 81–114, pls. 2–8. https://doi.org/10.1111/j.1096-3642.1818.tb00327.x
    Morton, B. & Dinesen, G.E. (2011) The biology and functional morphology of Modiolarca subpicta (Bivalvia: Mytilidae: Musculinae), epizoically symbiotic with Ascidiella aspersa (Urochordata: Ascidiacea), from the Kattegat, northern Jutland, Denmark. Journal of the Marine Biological Association of the United Kingdom, 91 (8), 1637–1649. https://doi.org/10.1017/S0025315410001980
    Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32 (1), 268–274. https://doi.org/10.1093/molbev/msu300
    Nishikawa, T. (2006) Tunicata and Cephalochordata. In: Okutani, T. (Ed.), Umibe-no-Ikimono [Seashore Animals]. New edition of Yama-Kei Field Books 3. Yama-to-Keikoku-sha Publisher, Tokyo, pp. 319–330. [in Japanese]
    Nishitani, G., Nagai, S., Hayakawa, S., Kosaka, Y., Sakurada, K., Kamiyama, T. & Gojobori, T. (2012) Multiple plastids collected by the dinoflagellate Dinophysis mitra through kleptoplastidy. Applied and Environmental Microbiology, 78 (3), 813−821. https://doi.org/10.1128/AEM.06544-11
    Odate, S. & Pawlik, J.R. (2007) The role of vanadium in the chemical defense of the solitary tunicate, Phallusia nigra. Journal of Chemical Ecology, 33, 643–654. https://doi.org/10.1007/s10886-007-9251-z
    Oka, A. (1892) Die periodische Regeneration der oberen Körperhälfte bei den Diplosomiden. Biologisches Centralblatt, 12, 265−268. https://doi.org/10.5962/bhl.part.7276
    Oka, A. (1906) Notizen über japanische Ascidien, 1. Annotationes zoologicae Japonenses, 6, 37−52.
    Oka, A. (1933) Uber Sigillinaria, eine neue Synascidien gattung aus Nordpazific, Proceedings of the Imperial Academy of Japan, 9 (2), 78−81. https://doi.org/10.2183/pjab1912.9.78
    Okada, Y.K. (1935) Stolonization in Myrianida. Journal of the Marine Biological Association of the United Kingdom, 20 (1), 93–98. https://doi.org/10.1017/S0025315400010079
    Orensky, L.D. & Williams, J.D. (2009) Morphology and ecology of a new sexually dimorphic species of Polydora (Polychaeta: Spionidae) associated with hermit crabs from Jamaica, West Indies. Zoosymposia, 2, 229–240. https://doi.org/10.11646/zoosymposia.2.1.17
    Palumbi, S., Martin, A., Romano, S., McMillan, W.O., Stice, L. & Grabowski, G. (1991) The Simple Fool’s Guide to PCR. Version 2.0. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu, 45 pp.
    Petersen, J.K. (2007) Ascidian suspension feeding. Journal of Experimental Marine Biology and Ecology, 342 (1), 127–137. https://doi.org/10.1016/j.jembe.2006.10.023
    Pisut, D.P. & Pawlik, J.R. (2002) Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids? Journal of Experimental Marine Biology and Ecology, 270 (2), 203–214. https://doi.org/10.1016/S0022-0981(02)00023-0
    Radashevsky, V.I. (1993) Revision of the genus Polydora and related genera from the North West Pacific (Polychaeta: Spionidae). Publications of the Seto Marine Biological Laboratory, 36, 1–60. https://doi.org/10.5134/176224
    Radashevsky, V.I. (2005) On adult and larval morphology of Polydora cornuta Bosc, 1802 (Annelida: Spionidae). Zootaxa, 1064 (1), 1–24. https://doi.org/10.11646/zootaxa.1064.1.1
    Radashevsky, V.I. (2012) Spionidae (Annelida) from shallow waters around the British Islands: an identification guide for the NMBAQC Scheme with an overview of spionid morphology and biology. Zootaxa, 3152 (1), 1–35. https://doi.org/10.11646/zootaxa.3152.1.1
    Radashevsky, V.I. & Hsieh, H.-L. (2000) Polydora (Polychaeta: Spionidae) species from Taiwan. Zoological Studies, 39 (3), 203–217.
    Radashevsky, V.I. & Pankova, V.V. (2013) Shell-boring versus tube-dwelling: is the mode of life fixed or flexible? Two cases in spionid polychaetes (Annelida, Spionidae). Marine Biology, 160, 1619–1624. https://doi.org/10.1007/s00227-013-2214-8
    Richlen, M.L. & Barber, P.H. (2005) A technique for the rapid extraction of microalgal DNA from single live and preserved cells. Molecular Ecology Notes, 5 (3), 688−691. https://doi.org/10.1111/j.1471-8286.2005.01032.x
    Rodrigues, S.C., Simões, M.G., Kowalewski, M., Petti, M.A.V., Nonato, E.F., Martinez, S. & Del Rio, C.J. (2008) Biotic interaction between spionid polychaetes and bouchardiid brachiopods: paleoecological, taphonomic and evolutionary implications. Acta Palaeontologica Polonica, 53 (4), 657–668. https://doi.org/10.4202/app.2008.0410
    Sato-Okoshi, W. (1998) Three new species of Polydorids (Polychaeta, Spionidae) from Japan. Species Diversity, 3, 277–288. https://doi.org/10.12782/specdiv.3.277
    Sato-Okoshi, W. (1999) Polydorid species (Polychaeta: Spionidae) in Japan, with descriptions of morphology, ecology and burrow structure. 1. Boring species. Journal of the Marine Biological Association of the United Kingdom, 79 (5), 831–848. https://doi.org/10.1017/S0025315498001003
    Sato-Okoshi, W. & Abe, H. (2012) Morphological and molecular sequence analysis of the harmful shell boring species of Polydora (Polychaeta: Spionidae) from Japan and Australia. Aquaculture, 368–369 + 40–47. https://doi.org/10.1016/j.aquaculture.2012.08.046
    Sato-Okoshi, W. & Abe, H. (2013) Morphology and molecular analysis of the 18S rRNA gene of oyster shell borers, Polydora species (Polychaeta: Spionidae), from Japan and Australia. Journal of the Marine Biological Association of the United Kingdom, 93 (5), 1279–1286. https://doi.org/10.1017/S002531541200152X
    Sato-Okoshi, W., Abe, H., Nishitani, G. & Simon, C.A. (2017) And then there was one: Polydora uncinata and Polydora hoplura (Annelida: Spionidae), the problematic polydorid pest species represent a single species. Journal of the Marine Biological Association of the United Kingdom, 97 (8), 1675–1684. https://doi.org/10.1017/S002531541600093X
    Sato-Okoshi, W. & Nomura, T. (1990) Infestation of the Japanese scallop Patinopecten yessoensis by the boring polychaetes Polydora on the coast of Hokkaido and Tohoku District. Nippon Suisan Gakkaishi, 56 (10), 1593–1598. [in Japanese with English Abstract] https://doi.org/10.2331/suisan.56.1593
    Sato-Okoshi, W. & Okoshi, K. (1996) Microstructure of scallop shells infested with young boring polychaete, Polydora variegata. Bulletin de l'Institut océanographique, Monaco, 14 (4), 203–207.
    Sato-Okoshi, W., Sugawara, Y. & Nomura, T. (1990) Reproduction of the boring polychaete Polydora variegata inhabiting scallops in Abashiri Bay, North Japan. Marine Biology, 104, 61–66. https://doi.org/10.1007/BF01313158
    Say, T. (1822) An account of some of the marine shells of the United States. Journal of the Academy of Natural Sciences of Philadelphia, 2 (1), 221–248. https://www.biodiversitylibrary.org/page/36831247
    Scholin, C.A., Herzog, M., Sogin, M. & Anderson, D.M. (1994) Identification of group-and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. Journal of Phycology, 30 (6), 999–1011. https://doi.org/10.1111/j.0022-3646.1994.00999.x
    Simon, C.A. & Sato-Okoshi, W. (2015) Polydorid polychaetes on farmed molluscs: distribution, spread and factors contributing to their success. Aquaculture Environment Interactions, 7 (2), 147–166. https://doi.org/10.3354/aei00138
    Skogsberg, T. & Vansell, G.H. (1928) Structure and behavior of the amphipod Polycheria osborni. Proceedings of the California Academy of Sciences, 17, 267–295. [https://www.biodiversitylibrary.org/page/3129308]
    Spencer, H.G. (2009) Using phylogenies to reveal rare events. New Zealand Science Review, 66 (1), 9–11.
    Spooner, G.M., Wilson, D.P. & Trebble, N. (1957) Phylum Annelida. In: Plymouth Marine Fauna, third edition. Marine Biological Association of the United Kingdom, Plymouth, pp. 109–149.
    Stock, J.H. (1967) Report on the Notodelphyidae (Copepoda, Cyclopoida) of the Israel South Red Sea Expedition. Bulletin of the Israel Sea Fisheries Research Station, 46 (Israel South Red Sea Expedition, 1962, Reports, 27), 1–126.
    Stoecker, D. (1980) Chemical defenses of ascidians against predators. Ecology, 61 (6), 1327–1334. https://doi.org/10.2307/1939041
    Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56 (4), 564–577. https://doi.org/10.1080/10635150701472164
    Teramoto, W., Sato-Okoshi, W., Abe, H., Nishitani, G. & Endo, Y. (2013) Morphology, 18S rRNA gene sequence and life history of a new Polydora species (Polychaeta: Spionidae) from northeastern Japan. Aquatic Biology, 18 (1), 31–45. https://doi.org/10.3354/ab00485
    Thiel, M. (2000) Population and reproductive biology of two sibling amphipod species from ascidians and sponges. Marine Biology, 137 (4), 661–674. https://doi.org/10.1007/s002270000372
    Tokioka, T. (1958) Contribution to Japanese ascidian fauna. 12. Sporadic memoranda. Publications of the Seto Marine Biological Laboratory, 6 (3), 313–326. https://doi.org/10.5134/174590
    Tokioka, T. & Nishikawa, T. (1975) Contribution to the Japanese ascidian fauna. 27. Some ascidians from Okinawa, with notes on a small collection from Hong Kong. Publications of the Seto Marine Biological Laboratory, 22, 323–341. https://doi.org/10.5134/175896
    Watanabe, H. & Tokioka, T. (1972) Two new species and one possibly new race of social styelids from Sagami Bay with remarks on their life history especially the mode of budding. Publications of the Seto Marine Biological Laboratory, 19 (5), 327–345. https://doi.org/10.5134/175726
    White, K.M. (1949) Musculus lebourae, new species. Journal of Molluscan Studies, 28 (1), 46–49. https://doi.org/10.1093/oxfordjournals.mollus.a064557
    White, K.N. (2011) A taxonomic review of the Leucothoidae (Crustacea: Amphipoda). Zootaxa, 3078 (1), 1–113. https://doi.org/10.11646/zootaxa.3078.1.1
    Williams, J.D. (2000) A new species of Polydora (Polychaeta: Spionidae) from the Indo-West Pacific and first record of host hermit crab egg predation by a commensal polydorid worm. Zoological Journal of the Linnean Society, 129 (4), 537–548. https://doi.org/10.1111/j.1096-3642.2000.tb00616.x
    Williams, J.D. & McDermott, J.J. (2004) Hermit crab biocoenoses: A worldwide review of the diversity and natural history of hermit crab associates. Journal of Experimental Marine Biology and Ecology, 305, 1–128. https://doi.org/10.1016/j.jembe.2004.02.020
    Williams, L.G., Karl, S.A., Rice, S. & Simon, C. (2017) Molecular identification of polydorid polychaetes (Annelida: Spionidae): is there a quick way to identify pest and alien species? African Zoology, 52 (2), 105–118. https://doi.org/10.1080/15627020.2017.1313131
    Wisshak, M. & Neumann, C. (2006) A symbiotic association of a boring polychaete and an echinoid from the Late Cretaceous of Germany. Acta Palaeontologica Polonica, 51 (3), 589–597.
    Ye, L., Tang, B., Wu, K., Su, Y., Wang, R., Yu, Z. & Wang, J. (2015) Mudworm Polydora lingshuiensis sp. n is a new species that inhabits both shell burrows and mudtubes. Zootaxa, 3986 (1), 88–100. https://doi.org/10.11646/zootaxa.3986.1.4
    Zajac, R.N. (1991) Population ecology of Polydora ligni (Polychaeta: Spionidae). II. Seasonal demographic variation and its potential impact on life history evolution. Marine Ecology Progress Series, 77, 207–220. https://doi.org/10.3354/meps077207
    Zhang, D., Gao, F., Jakovlić, I., Zou, H., Zhang, J., Li, W.X. & Wang, G.T. (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20 (1), 348–355. https://doi.org/10.1111/1755-0998.13096