Abstract
Diamesa caucasica Kownacki et Kownacka was described from the watercourses of the Terek River basin flowing down from the high mountain glaciers of the Caucasus (alt. 2000–2700 m a.s.l.), namely from the Chkheri River (Ortsveri Glacier), the Suatisi River (Savitisi Glacier) and the Mnaisidon River (Mna Glacier) in Georgia (Kownacki & Kownacka 1973). So far, no other finds of this species have been recorded in the Caucasus and other mountainous regions of Europe. Apparently, D. caucasica is endemic to the Caucasus and its distribution probably does not go beyond the glacial streams of the Terek River basin. This assumption is confirmed by the finds of adult males of this species made by Dmitry Palatov in 2018–2022 in the rivers at an altitude 1402–1980 m a.s.l., originating in the Mostocete, Tanantsete, Skazsky and Tseysky glaciers of North Ossetia and which also belong to the Terek River basin.
References
Ashe, P. & O’Connor, J.P. (2009) A World Catalogue of Chironomidae (Diptera). Part 1. Buchonomyiinae, Chilenomyiinae, Podonominae, Aphroteniinae, Tanypodinae, Usambaromyiinae, Diamesinae, Prodiamesinae and Telmatogetoninae. Irish Biogeographical Society & National Museum of Ireland, Dublin, 445 pp.
Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376. https://doi.org/10.1007/BF01734359
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3 (5), 294–299.
Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16 (2), 111–120. https://doi.org/10.1007/BF01731581
Kownacki, A. & Kownacka, M. (1973) Chironomidae (Diptera) from the Caucasus. II. Diamesa Waltl group latitarsis. Bulletin de L’Académie des Polonaise des Sciences. Série des sciences biologiaues, 21, 131–138
Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33 (7), 1870–1874. https://doi.org/10.1093/molbev/msw054
Lanfear, R., Calcott, B., Ho, S.Y. & Guindon, S. (2012) Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29 (6), 1695–1701. https://doi.org/10.1093/molbev/mss020
Makarchenko, E.A., Semenchenko, A.A. & Palatov, D.M. (2022) Taxonomy of Diamesa steinboecki group (Diptera: Chironomidae: Diamesinae), with description and DNA barcoding of new species. I. Subgroups steinboecki and longipes. Zootaxa, 5125 (5), 483–512. https://doi.org/10.11646/zootaxa.5125.5.2
Montagna, M., Mereghetti, V., Lencioni, V. & Rossaro, B. (2016) Integrated Taxonomy and DNA Barcoding of Alpine Midges (Diptera: Chironomidae). PLoS ONE, 11 (3), e0149673. https://doi.org/10.1371/journal.pone.0149673
Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67 (5), 901–904. https://doi.org/10.1093/sysbio/syy032
Ronquist, F., Teslenko, M., Mark, P.V.D., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
Sæther, O.A. (1980) Glossary of chironomid morphology terminology (Diptera: Chironomidae). Entomologica scandinavica, Supplement 14, 1–51.
Tavaré, S. (1986) Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences. Lectures on Mathematics in the Life Sciences. American Mathematical Society, 17, 57–86.