Abstract
Oxyurichthys omanensis sp. nov. is described as a new gobiid species from a mudflat/estuary habitat in northern Oman. The new species is diagnosed among all currently recognised congeners by the following combination of character states: elongate tentacle on dorsoposterior surface of the eye; nape with well-developed membranous crest; nape scaled to above anterior half of opercle along sides with naked median along membranous crest, scales never reaching to above preopercle; opercle and pectoral base naked; scales ctenoid laterally on trunk posterior to base of second dorsal fin 3rd element; lateral scale rows 51–58, usually 51–56; transverse forward scale rows 23–29, usually 24–28; transverse rearward scale rows 14–16, usually 14–15; upper lip usually constricted at premaxillary symphysis; infraorbital transverse papillae row 2 reaching eye margin dorsally and markedly short of longitudinal row d ventrally; additional short transverse papillae rows between rows 2 and 3i present; dark saddle present over caudal peduncle; snout length 34.9–45.4% HL; second dorsal-fin longest ray 1.1–1.6 head depth; pelvic fin always reaching or passing anal-fin origin. The K2P genetic distances (%) in the mtDNA COI barcode region between O. omanensis and the other Oxyurichthys species were all high (11.2–30.6%) with the K2P nearest neighbor distance of 11.2% to O. cornutus and O. ophthalmonema.
References
Akihito, Prince, Hayashi, M. & Yoshino, T. (1984) Suborder Gobioidei. In: Masuda, H., Amaoka, K., Araga, C., Uyeno, T. & Yoshino, T. (Eds.), The fishes of the Japanese Archipelago. Tokai University Press, Tokyo, pp. 236–289, pls. 235–355.
Baldwin, C.C., Mounts, J.H., Smith, D.G. & Weigt, L.A. (2009) Genetic identification and color descriptions of early life history stages of Belizean Phaeoptyx and Astrapogon (Teleostei: Apogonidae) with comments on identification of adult Phaeoptyx. Zootaxa, 26, 1–22. https://doi.org/10.5281/zenodo.185742
Bruford, M.W., Hanotte, O., Brookfield, J.F.Y. & Burke, T.A. (1992) Single-locus and multilocus DNA fingerprinting. In: Hoezel, C. (Ed.), Molecular genetics analysis of populations: a practical approach. Oxford University Press, New York, pp. 225–269.
Chang, C.H., Shao, K.T., Lin, H.Y., Chiu, Y.C., Lee, M.Y., Liu, S.H. & Lin, P.L. (2017) DNA barcodes of the native ray-finned fishes in Taiwan. Molecular Ecology Resources, 17, 796–805. https://doi.org/10.1111/1755-0998.12601
Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x
Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109
Froese, R. & Pauly, D. (2022) FishBase. Available from: www.fishbase.org. (accessed 12 February 2022)
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29
Isari, S., Pearman, J.K., Casas, L., Michell, C.T., Curdia, J., Berumen, M.L. & Irigoien, X. (2017) Exploring the larval fish community of the central Red Sea with an integrated morphological and molecular approach. PloS one, 12, e0182503. https://doi.org/10.1371/journal.pone.0182503
Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A. & Flouri, T. (2017) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov Chain Monte Carlo. Bioinformatics, 33, 1630–1638. https://doi.org/10.1093/bioinformatics/btx025
Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. https://doi.org/10.1093/molbev/msw054
Miller, P.J. (1986) Gobiidae. In: Whitehead, P.J.P., Bauchot, M.-L., Hureau, J.-C., Nielsen, J. & Tortonese, E. (Eds.), Fishes of the North-eastern Atlantic and the Mediterranean. Vol. 3. UNESCO, Paris, pp. 1019–1085. https://doi.org/10.2307/1444931
Miller, P.J. (2003) The freshwater fishes of Europe. Vol. 8/I Mugilidae, Atherinidae, Atherinopsidae, Blenniidae, Odontobutidae, Gobiidae 1. AULA-Verlag GmbH, Wiebelsheim and Verlag fur Wissenschaft und Forschung, Berlin, XII + 404 pp.
Pezold, F.L. & Larson, H.K. (2015) A revision of the fish genus Oxyurichthys (Gobioidei: Gobiidae) with descriptions of four new species. Zootaxa, 3988 (1), 1–95. https://doi.org/10.11646/ZOOTAXA.3988.1.1
Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21, 609–620. https://doi.org/10.1111/1755-0998.13281
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
Rathnasuriya, M.I.G., Mateos-Rivera, A., Skern-Mauritzen, R., Wimalasiri, H.B.U., Jayasinghe, R.P.P.K., Krakstad, J.O. & Dalpadado, P. (2021) Composition and diversity of larval fish in the Indian Ocean using morphological and molecular methods. Marine Biodiversity, 51, 1–15. https://doi.org/10.1007/s12526-021-01169-w
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
Sanzo, L. (1911) Distribuzione delle papille cutanee (organi ciatiformi) e suo valore sistematico nei Gobi. Mittheilungen aus der Zoologischen Station zu Neapel, 20, 251–328.
Schliewen, U.K. & Kovačić, M. (2008) Didogobius amicuscaridis spec. nov. and D. wirtzi spec. nov., two new species of symbiotic gobiid fish from São Tomé and Cape Verde islands. Spixiana, 31, 247–261.
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690. https://doi.org/10.1093/bioinformatics/btl446
Steinke, D., Connell, A.D. & Hebert, P.D. (2016) Linking adults and immatures of South African marine fishes. Genome, 59, 959–967. https://doi.org/10.1139/gen-2015-0212
Thu, P.T., Huang, W.C., Chou, T.K., Van Quan, N., Van Chien, P., Li, F., Shao, K.T. & Liao, T.Y. (2019) DNA barcoding of coastal ray-finned fishes in Vietnam. PloS one, 14, e0222631. https://doi.org/10.1371/journal.pone.0222631
Viswambharan, D., Pavan-Kumar, A., Singh, D.P., Jaiswar, A.K., Chakraborty, S.K., Nair, J.R. & Lakra, W.S. (2015) DNA barcoding of gobiid fishes (Perciformes, Gobioidei). Mitochondrial DNA, 26, 15–19.
https://doi.org/10.3109/19401736.2013.834438
Xia, X. (2018) DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 35, 1550–1552. https://doi.org/10.1093/molbev/msy073
Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. (2003) An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 26, 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3
Zarei, F., Esmaeili, H.R., Schliewen, U.K., Abbasi, K. & Sayyadzadeh, G. (2021) Mitochondrial phylogeny, diversity, and ichthyogeography of gobies (Teleostei: Gobiidae) from the oldest and deepest Caspian sub-basin and tracing source and spread pattern of an introduced Rhinogobius species at the tricontinental crossroad. Hydrobiologia, 848, 1267–1293. https://doi.org/10.1007/s10750-021-04521-0
Zhang, J. & Hanner, R. (2012) Molecular approach to the identification of fish in the South China Sea. PLoS one, 7, e30621.
https://doi.org/10.1371/journal.pone.0030621
Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499