Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-03-15
Page range: 270-282
Abstract views: 244
PDF downloaded: 42

Earthworms from natural and managed ecosystems in Southern Bahia, Brazil

1 Empresa Brasileira de Pesquisa Agropecuária Florestas - Embrapa Florestas, Estrada da Ribeira, Km 111, Caixa Postal 319, CEP 83411-000, Colombo-PR, Brazil.
2 Universidade Federal do Paraná - UFPR, Rua dos Funcionários 1540, Curitiba-PR, 80035-050, Brasil.
2 Universidade Federal do Paraná - UFPR, Rua dos Funcionários 1540, Curitiba-PR, 80035-050, Brasil.
3Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal. Municipal Center for Culture and Development - CMCD, Organic Farming: Agriculture and Organic Production Partnership, Centro Empresarial, Zona Industrial – 6060-182, Idanha-a-Nova, Portugal.
5 Maharishi International University, Fairfield, IA 52242, USA.
Empresa Brasileira de Pesquisa Agropecuária Florestas - Embrapa Florestas, Estrada da Ribeira, Km 111, Caixa Postal 319, CEP 83411-000, Colombo-PR, Brazil. Universidade Federal do Paraná - UFPR, Rua dos Funcionários 1540, Curitiba-PR, 80035-050, Brasil.
Annelida Oligochaeta Atlantic Forest Ocnerodrilidae biodiversity Pontoscolex corethrurus

Abstract

The earthworms (Crassiclitellata) of the Northern Atlantic Forest region are poorly known, and many new species are expected to be found in the region. Hence, quantitative and qualitative samples were taken in the Atlantic Forest region of southern Bahia State, Brazil, at eight sites to assess species presence and abundance in different land uses (forests, pastures, plantations). Earthworms were also qualitatively collected at an additional eight sites. Only one to two species per site were found in quantitative samples, while qualitative samples generally resulted in higher species recoveries, with highest richness observed at the native Atlantic Forest of Veracel in Porto Seguro. Pontoscolex corethrurus (Müller, 1857) was the dominant species at all sites and in most land use systems, probably favored by human migration and agricultural activities; it was only absent in one primary forest site where native Ocnerodrilidae species predominated. In total at least 14 species were found of which eight were new, belonging to the genus Rhinodrilus and three new genera in the Ocnerodrilidae family (Pauqueba, Parabauba and Diplomoela). Contrary to sites in Southern and Southeastern Brazil, where many native species belong to the Glossoscolecidae family, in southern Bahia, Ocnerodrilidae species tend to be more prevalent, occupying various habitats. More intensive sampling of these habitats, including surface litter, in and under fallen logs and dead tree trunks, under rocks, in bromeliad leaf tanks and deeper soil layers is essential in order to properly characterize earthworm communities in Brazilian Atlantic Forests.

 

References

  1. Anderson, J.M. & Ingram, J.S.I. (1993) Tropical soil biology and fertility: a handbook of methods. 2nd ed. CAB International, Wallingford, 171 pp.
    Brown, G.G., James, S.W. (2007) Ecologia, biodiversidade e biogeografia das minhocas no Brasil. In: Brown, G.G., Fragoso, C. (Eds.), Minhocas na América Latina: Biodiversidade e ecologia. Londrina, Embrapa Soja, pp. 291–376.
    Brown, G.G., James, S.W., Pasini, A., Nunes, D.H., Benito, N.P., Martins, P.T. & Sautter, K.D. (2006) Exotic, peregrine, and invasive earthworms in Brazil: Diversity, distribution, and effects on soils and plants. Caribbean Journal of Science, 42, 339–358.
    Brown, G.G., Callaham, M.A., Niva, C.C., Feijoo, A., Sautter, K.D., James, S.W., Fragoso, C., Pasini, A. & Schmelz, R.M. (2013) Terrestrial oligochaete research in Latin America: The importance of the Latin American Meetings on Oligochaete Ecology and Taxonomy. Applied Soil Ecology, 69, 2–12. https://doi.org/10.1016/j.apsoil.2012.12.006
    Buck, N. & Abe, A.S. (1990) Atividade sazonal do minhocoçu Andiorrhinus samuelensis na região de Porto Velho, Rondônia (Oligochaeta, Glossoscolecidae). Ciência e Cultura, 42, 835–838.
    Critical Ecosystem Partnership Fund – CEPF (2021) Impact report 2001-2021. Annual report 2021. Conservation International, Arlington. 61 pp. Available from: https://www.cepf.net/sites/default/files/2021_cepf_impact_and_annual_report.pdf (Accessed 29 November 2022)
    Csuzdi, C. (2012) Earthworm species, a searchable database. Opuscula Zoologica, 43 (1), 97–99.
    Decaëns, T., Porco, D., Rougerie, R., Brown, G.G. & James, S.W. (2013) Potential of DNA barcoding for earthworm research in taxonomy and ecology. Applied Soil Ecology, 65, 35–42. https://doi.org/10.1016/j.apsoil.2013.01.001
    Decaëns, T., Porco, D., James, S.W., Brown, G.G., Chassany, V., Dubs, F., Dupont, L., Lapied, E., Rougerie, R., Rossi, J.-P. & Roy, V. (2016) DNA barcoding reveals diversity patterns of earthworm communities in remote tropical forests of French Guiana. Soil Biology & Biochemistry, 92, 171–183. https://doi.org/10.1016/j.soilbio.2015.10.009
    Embrapa. Centro Nacional de Pesquisa de Solos. (1997) Manual de métodos de análise de solo. 2nd ed. Embrapa Solos, Rio de Janeiro, 575 pp.
    Fernandes, J.O., Uehara-Prado, M. & Brown, G.G. (2010) Minhocas exóticas como indicadoras de perturbação antrópica em áreas de Floresta Atlântica. Acta Zoológica Mexicana, nueva série, 26, 211–217. https://doi.org/10.21829/azm.2010.262889
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.
    Fragoso, C. & Rojas-Fernández, P. (1996) Earthworms inhabiting bromeliads in Mexican tropical rain forests: ecological and historical determinants. Journal of Tropical Ecology, 12, 729–734. https://doi.org/10.1017/S0266467400009925
    Fragoso, C., Brown, G.G., Patrón, J.C., Blanchart, E., Lavelle, P., Pashanasi, B., Senapati, B. & Kumar, T. (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of earthworms. Applied Soil Ecology, 6, 17–35. https://doi.org/10.1016/S0929-1393(96)00154-0
    Gomes, V.S., Barreto-Garcia, P.A.B., Scoriza, R.N., Júnior, V.C., Pereira, J.E.S. & Fernandes, J.S. (2022) Influence of different Eucalyptus hybrids on soil macrofauna. Anais da Academia Brasileira de Ciências, 94 (2), e20200247. https://doi.org/10.1590/0001-3765202220200247
    Hebert, P.D.N., Cywinska, A., Ball, S.L. & De Waard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, Series B, Biological Sciences, 270, 313–321. https://doi.org/10.1098/rspb.2002.2218
    James, S.W., Bartz, M.L.C. & Brown, G.G. (2023) New Ocnerodrilidae genera, species and records from Brazil (Annelida: Crassiclitellata). Zootaxa, 5255 (1), 235–269. https://doi.org/10.11646/zootaxa.5255.1.22
    Kinberg, J.G.H. (1867) Annulata nova. Öfversigt af Kongliga Vetenskaps-akademiens Förhandlingar, 23, 97–100.
    Lapied, E. & Lavelle, P. (2003) The peregrine earthworm Pontoscolex corethrurus in the East coast of Costa Rica. Pedobiologia, 47, 471–474. https://doi.org/10.1078/0031-4056-00215
    Lavelle, P., Barois, I., Cruz, I., Fragoso, C., Hernandez, A., Pineda, A. & Rangel, P. (1987) Adaptive strategies of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biology and Fertility of Soils, 5, 188–194. https://doi.org/10.1007/BF00256899
    Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P. & Rossi, J.-P. (2006) Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42, S3–S15. https://doi.org/10.1016/j.ejsobi.2006.10.002
    Lavelle, P. & Lapied, E. (2003) Endangered earthworms of Amazonia: an homage to Gilberto Righi. Pedobiologia, 47, 419–427. https://doi.org/10.1078/0031-4056-00207
    Marichal, R., Martinez, A. F., Praxedes, C., Ruiz, D., Carvajal, A. F., Oszwald, J., del Pilar Hurtado, M., Brown, G.G., Grimaldi, M., Desjardins, T., Sarrazin, M., Decaëns, T., Velasquez, E. & Lavelle, P. (2010) Invasion of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) in landscapes of the Amazonian deforestation arc. Applied Soil Ecology, 46, 443–449. https://doi.org/10.1016/j.apsoil.2010.09.001
    Misirlioğlu, M., Reynolds, J.W., Stovanić, M, Trakić, T, Sekulić, J., James, S.W., Csuzdi, C., Decaëns, T., Lapied, E., Phillips, H.R.P., Cameron, E.K & Brown, G.G. (2023) Earthworms (Clitellata, Megadrili) of the world: an updated checklist of valid species and families, with notes on their distribution. Zootaxa, 5255 (1), 417–438. https://doi.org/10.11646/zootaxa.5255.1.33
    Müller, F. (1857) Description of a new species of earthworm (Lumbricus corethrurus). Annals and Magazine of Natural History, 2, 13–15. https://doi.org/10.1080/00222935709487865
    Myers, N., Mittermeier, R.A., Mittermeier, C.G., Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. https://doi.org/10.1038/35002501
    Nascimento, M.S. (2021) Carbono em agregados e macrofauna do solo em sistemas de cultivo de café no sudoeste da Bahia. Master’s dissertation in Agronomy. Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil, 61 pp.
    Nascimento, M.S., Barreto-Garcia, P.A., Scoriza, R.N. & Pereira, J.E.S. (2019) Edaphic macrofauna as indicator of edge effect in semi-deciduous forest fragments. Floresta e Ambiente, 26, e20170090. https://doi.org/10.1590/2179-8087.009017
    Nath, S. & Chaudhuri, P.S. (2010) Human-induced biological invasions in rubber (Hevea brasiliensis) plantations of Tripura (India) – Pontoscolex corethrurus as a case study. Asian Journal of Experimental Biology and Science, 1 (2), 360–369.
    Nunes D.H., Pasini, A., Benito, N.P. & Brown, G.G. (2006) Earthworm diversity in four land use systems in the region of Jaguapitã, Paraná State, Brazil. Caribbean Journal of Science, 42, 331–338
    Paoletti, M.G. (1999) The role of earthworms for assessment of sustainability and as bioindicators. Agriculture Ecosystems and Environment, 74, 137–155. https://doi.org/10.1016/S0167-8809(99)00034-1
    Peneireiro, F.M. (1999) Sistemas agroflorestais dirigidos pela sucessão natural: Um estudo de caso. Master’s Dissertation, University of São Paulo, Piracicaba.
    Pereira, R.D.C., Albanez, J.M. & Mamédio, I.M.P. (2012) Diversidade da meso e macrofauna edáfica em diferentes sistemas de manejo de uso do solo em Cruz das Almas – Bahia. Magistra, 24, 63–76.
    R Development Core Team (2008) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
    Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F. & Hirota, M. (2009) Brazilian Atlantic Forest: how much is left and how is the remaining Forest distributed? Implications for conservation. Biological Conservation, 142, 1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021
    SOSMA/INPE (2021) Atlas dos remanescentes florestais da Mata Atlântica: período 2019/2020, relatório técnico. Fundação SOS Mata Atlântica, São Paulo, 73 pp.

  2.  

  3.  

  4.  

  5.  

  6.