Skip to main content Skip to main navigation menu Skip to site footer
Type: Correspondence
Published: 2023-06-02
Page range: 446-450
Abstract views: 672
PDF downloaded: 45

Harnessing the power of AI language models for taxonomy and systematics: a follow-up to “Can ChatGPT be leveraged for taxonomic investigations? Potential and limitations of a new technology” by Davinack (2023)

Centro de Ciências Naturais e Humanas, Laboratório de Sistemática e Diversidade, Universidade Federal do ABC, Av. dos Estados, 5001. Bairro Bangu, CEP 09210-580, Santo André/SP, Brazil.
Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Av. dos Estados, 5001. Bairro Bangu, CEP 09210-580, Santo André/SP, Brazil.
taxonomy General

Abstract

N/A

References

  1. Alkaissi, A. & McFarlane, D. (2023) Artificial hallucinations in ChatGPT: implications in scientific writing. Cureus, 15 (2), e35179. https://doi.org/10.7759/cureus.35179
    Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I. & Amodei, D. (2020) Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877–1901.
    Castelvecchi, D. (2016) Can we open the black box of AI. Nature, 538 (7623), 20–23. https://doi.org/10.1038/538020a.
    Curtis, A. & ChatGPT (2023) To ChatGPT or not to ChatGPT? The impact of Artificial Intelligence on academic publishing. The Pediatric Infectious Disease Journal, 42 (4), 275. https://doi.org/10.1097/INF.0000000000003852
    Davinack, A.A. (2023) Can ChatGPT be leveraged for taxonomic investigations? Potential and limitations of a new technology. Zootaxa, 5270 (2), 347–350. https://doi.org/10.11646/zootaxa.5270.2.12
    Elnathan, R. (2021) English is the language of science — but precision is tough as a non-native speaker. Nature. Available from: https://www.nature.com/articles/d41586-021-00899-y (accessed 5 April 2023) https://doi.org/10.1038/d41586-021-00899-y
    Ford, M. (2021) Rule of the robots: how artificial intelligence will transform everything. Basic Books, New York, 320 pp.
    Fox, C.W., Meyer, J. & Aymée, E. (2023) Double-blind peer review affects reviewer ratings and editor decisions at an ecology journal. Functional Ecology. [in press] https://doi.org/10.1111/1365-2435.14259
    Høye, T.T., Ärje, J., Bjerge, K., Hansen, O.L.P., Iosifidis, A., Leese, F., Mann, H.M.R., Meissner, K., Melvad, C. & Raitoharju, J. (2021) Deep learning and computer vision will transform entomology. PNAS, 118 (2), e2002545117. https://doi.org/10.1073/pnas.2002545117
    International Commission on Zoological Nomenclature (ICZN) (1999) International Code of Zoological Nomenclature. 4th Edition. London: International Trust for Zoological Nomenclature, 306 pp.
    Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J. & Tang, J. (2021) Self-supervised learning: Generative or contrastive. IEEE Transactions on Knowledge and Data Engineering, 35 (1), 857–876. https://doi.org/10.1109/TKDE.2021.3090866
    Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P.F., Leike, J. & Lowe, R. (2022) Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35 (NeurIPS 2022). Available from: https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html (accessed 6 April 2023)
    Pappas, N. & Meyer, T. (2012) A survey on language modeling using neural networks. Idiap-RR-32-2012. Available from: https://infoscience.epfl.ch/record/192566 (accessed 18 May 2023)
    Quintans-Júnior, L.J., Gurgel, R.Q., Araújo, A.A.S., Correia, D. & Martins-Filho, P.R. (2023) ChatGPT: the new panacea of the academic world. Revista da Sociedade Brasileira de Medicina Tropical, 56, e0060. https://doi.org/10.1590/0037-8682-0060-2023
    Roberts, A., Austin, W., Evans, K., Bird, C., Schweizer, N. & Darling, K. (2016) A new integrated approach to taxonomy: the fusion of molecular and morphological systematics with type material in benthic Foraminifera. PLoS ONE, 11 (7), e0158754. https://doi.org/10.1371/journal.pone.0158754
    Santos, C.M.D., Amorim, D.S., Klassa, B., Fachin, D.A., Nihei, S.S., Carvalho, C.J.B., Falaschi, R.L., Mello-Patiu, C.A., Couri, M.S., Oliveira, S.S., Silva, V., Ribeiro, G.C., Capellari, R.S. & Lamas, C.J.E. (2016) On typeless species and the perils of fast taxonomy. Systematic Entomology, 41 (3), 511–515. https://doi.org/10.1111/syen.12180
    Thorp, H.H. (2023) ChatGPT is fun, but not an author. Science, 379 (6630), 313–313. https://doi.org/10.1126/science.adg7879
    Valan, M., Vondráček, D. & Ronquist, F. (2021) Awakening taxonomist’s third eye: exploring the utility of computer vision and deep learning in insect systematics. Systematic Entomology, 46 (4), 757–766. https://doi.org/10.1111/syen.12492
    van Dis, E.A.M., Bollen, J., Zuidema, W., van Rooij, R. & Bockting, C.L. (2023) ChatGPT: five priorities for research. Nature, 614, 224–226. https://doi.org/10.1038/d41586-023-00288-7