Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-06-29
Page range: 232-250
Abstract views: 609
PDF downloaded: 27

Phylogeny of dwarf geckos of the genus Lygodactylus (Gekkonidae) in the Western Indian Ocean

Institute of Zoology; University of Veterinary Medicine Hannover; 30559 Hannover; Germany
Nature Océan Indien; 46 rue des Mascarins; 97429 Petite Ile; La Réunion; France; Laboratoire PVBMT; Université de La Réunion; 97410 Saint-Pierre; La Réunion; France
Zoological Institute; Technical University of Braunschweig; Mendelssohnstr. 4; 38106 Braunschweig; Germany
Department of Biology and Center for Biodiversity and Ecosystem Stewardship; Villanova University; 800 Lancaster Avenue; Villanova; PA 19085; USA
Department of Biological Sciences; Rutgers University-Newark; 195 University Avenue; Newark; NJ 07102; USA
Zoologische Staatssammlung München (ZSM-SNSB); Münchhausenstraße 21; 81247 München; Germany
Leibniz Institute for the Analysis of Biodiversity Change (LIB); Museum of Nature; Martin-Luther-King-Platz 3; 20146 Hamburg; Germany
Zoological Institute; Technical University of Braunschweig; Mendelssohnstr. 4; 38106 Braunschweig; Germany
Reptilia Gekkonidae Lygodactylus Indian Ocean Islands Phylogeny

Abstract

Diurnal dwarf geckos of the genus Lygodactylus are distributed in tropical and subtropical regions and live in highly diverse habitats. The genus currently comprises 79 species and several candidates for new species or subspecies. Most of these taxa occur in Sub-Saharan Africa and Madagascar, with only two described species in South America. Although the main center of diversity of Lygodactylus currently is Africa, the genus probably has a Malagasy origin, followed by two or three independent transoceanic dispersal events between Madagascar and Africa and one trans-Atlantic dispersal from Africa to South America. A few species colonised islands in the Western Indian Ocean belonging to the Zanzibar Archipelago and to the Îles Éparses. Here we examined L. grotei pakenhami from Pemba Island, L. insularis from Juan de Nova, and L. verticillatus from Europa Island to clarify their taxonomic status and their origin. Concerning L. grotei pakenhami and L. insularis, preceding studies pointed to a relation to species of the African L. capensis group. In contrast, L. verticillatus on Europa Island is considered to be conspecific with Malagasy populations. Therefore, we conducted a phylogenetic study of the African L. capensis group and the Malagasy L. verticillatus group, and examined color pattern, selected morphological characters and two mitochondrial markers (ND2 for African and 16S rRNA for Malagasy Lygodactylus). Lygodactylus grotei pakenhami from Pemba and L. grotei from mainland Africa cannot be distinguished by their scalation, but their reciprocal monophyly suggested by mitochondrial DNA, conspicuously different coloration (both in adults and hatchlings) and their high genetic distances (16.3% in ND2) support the hypothesis that these taxa represent two distinct species. Consequently, we elevate L. grotei pakenhami to species level, as Lygodactylus pakenhami Loveridge, 1941. Lygodactylus pakenhami is endemic to Pemba Island which was possibly separated from the African mainland during the late Miocene or Early Pliocene (6 million years ago). The simplest explanation for the existence of L. pakenhami on Pemba is vicariance. A recent, human-mediated transportation is excluded, as the molecular data clearly indicate a longer period of isolation. Lygodactylus insularis has been supposed to be related to the taxa ‘capensis’ or ‘grotei’. However, it is impossible to discern the relationship of L. insularis, L. capensis and L. grotei by means of scalation or coloration alone. Our molecular phylogenetic analyses reveal that L. insularis is embedded within the L. capensis group, clearly indicating its African origin. The single gene (ND2) as well as the multigene analyses fully support a closer common origin of L. insularis and L. capensis than of L. insularis and L. grotei. However, the position of L. insularis within the clade formed by L. insularis, L. nyaneka, L. capensis sensu stricto and six L. aff. capensis groups is not clearly resolved. Lygodactylus insularis is endemic on Juan de Nova Island, an old low elevation atoll. That all L. insularis mitochondrial sequences are very similar to each other and together form a monophyletic lineage is in agreement with the hypothesis of a single dispersal event to the island. For the L. verticillatus population from Europa Island our mitochondrial data suggest close relationships to conspecific samples from the coastal regions of south-western Madagascar. As we found no relevant morphological or genetic differences between the insular and the Malagasy populations of L. verticillatus, and no remarkable genetic variation within the monophyletic lineage on Europa, we suggest a single, very recent dispersal event, perhaps human-mediated. Although the genus Lygodactylus colonised Africa, islands in the Gulf of Guinea, South America and some islands in the Western Indian Ocean, it seems—compared to other lizard genera—to be only moderately successful in transoceanic long-distance dispersal.

 

References

  1. Ali, J.R. & Huber, M. (2010) Mammalian biodiversity on Madagascar controlled by ocean currents. Nature, 463, 653–656. https://doi.org/10.1038/nature08706 DOI: https://doi.org/10.1038/nature08706
  2. Ali, J.R. & Hedges, S.B. (2022) A review of geological evidence bearing on proposed Cenozoic land connections between Madagascar and Africa and its relevance to biogeography. Earth-Science Reviews, 232, 104103. https://doi.org/10.1016/j.earscirev.2022.104103 DOI: https://doi.org/10.1016/j.earscirev.2022.104103
  3. Austin, J.J., Arnold, E.N. & Jones, C.G. (2004) Reconstructing an island radiation using ancient and recent DNA: the extinct and living day geckos (Phelsuma) of the Mascarene islands. Molecular Phylogenetics and Evolution, 31 (1), 109–122. https://doi.org/10.1016/j.ympev.2003.07.011 DOI: https://doi.org/10.1016/j.ympev.2003.07.011
  4. Avise, J.C. & Ball, R.M. (1990) Principles of genealogical concordance in species concepts and biological taxonomy. In: Futuyma, D. & Antonovics, J. (Eds.), Oxford Surveys in Evolutionary Biology. Oxford University Press, Oxford, pp. 45–67.
  5. Bell, J.R. (2008) A simple way to treat PCR products prior to sequencing using ExoSAP-IT. Biotechniques, 44 (6), 834. https://doi.org/10.2144/000112890 DOI: https://doi.org/10.2144/000112890
  6. Blom, M.P.K., Matzke, N.J., Bragg, J.G., Arida, E., Austin, C.C., Backlin, A.R., Carretero, M.A., Fisher, R.N., Glaw, F., Hathaway, S.A., Iskandar, D.T., McGuire, J.A., Karin, B.R., Reilly, S.B., Rittmeyer, E.N., Rocha, S., Sanchez, M., Stubbs, A.L., Vences, M. & Moritz, C. (2019) Habitat preference modulates trans-oceanic dispersal in a terrestrial vertebrate. Proceedings of the Royal Society B, 286, 20182575. https://doi.org/10.1098/rspb.2018.2575 DOI: https://doi.org/10.1098/rspb.2018.2575
  7. Boettger, O. (1913) Reptilien und Amphibien von Madagascar, den Inseln und dem Festland Ostfarikas. In: Voeltzkow, A. (Ed.), Reise in Ostafrika in den Jahren 1903–1905. Wissenschaftliche Ergebnisse. Vol. 3. Systematische Arbeiten. Schweizerbartsche Verlagsbuchhandlung, Nägele und Sprosser, Stuttgart, pp. 269–375.
  8. Bons, J. & Pasteur, G. (1977) Solution histologique à un problème de taxonomie herpétologique intéressant les rapports paléobiologiques de l’Amérique du Sud et de l’Afrique. Comptes rendus de l’Académie des Sciences, 284 (24), 2547–2550.
  9. Branch, B. (1989) Field Guide to Snakes and Other Reptiles of Southern Africa, third ed. Struik Publishers (Pty) Ltd., Cape Town, 399 pp.
  10. Branch, W.R., Rödel, M.-O. & Marais, J. (2005) Herpetological survey of the Niassa Game Reserve, northern Mozambique—Part I: Reptiles. Salamandra, 41 (4), 195–214.
  11. Broadley, D.G. & Howell, K.M. (1991) A check list of the reptiles of Tanzania, with synoptic keys. Syntarsus, 1, 1–70.
  12. Bruford, M.W., Hanotte, O., Brookfield, J.F.Y. & Burke, T. (1992) Single-locus and multilocus DNA fingerprint. In: Hoelzel, A.R. (Ed.), Molecular Genetic Analysis of Populations: A Practical Approach. IRL Press, Oxford, pp. 225–270.
  13. Brygoo, E.R. (1966) Note sur les reptiles terrestres récoltés à Europa en avril 1964. Mémoires du Muséum national d’histoire naturelle, Série A, 41, 29–32.
  14. Caceres, S. (2003) Étude préalable pour le classement en Réserve Naturelle des Iles Éparses. Mémoire de DESS Sciences et Gestion de l’Environnement Tropical. Univ. Réunion (Laboratoire ECOMAR) & DIREN Réunion, 136 pp. Available from: http://poupin.joseph.free.fr/pdf/caceres-2003-iles-eparses-classement.pdf (accessed 13 June 2023)
  15. Clarke, G.P. & Burgess, N.D. (2000) Geology and geomorphology. In: Burgess, N.D. & Clarke, G.P. (Eds.), Coastal Forests of Eastern Africa. IUCN, Gland, pp. 29–40.
  16. Courgeon, S., Jorry, S.J., Camoin, G.F., BouDagher-Fadel, M.K., Jouet, G., Révillon, S., Bachèlery, P., Pelleter, E., Borgomano, J., Poli, E. & Droxler, A.W., (2016) Growth and demise of Cenozoic isolated carbonate platforms: New insights from the Mozambique Channel seamounts (SW Indian Ocean). Marine Geology, 380, 90–105. https://doi.org/10.1016/j.margeo.2016.07.006 DOI: https://doi.org/10.1016/j.margeo.2016.07.006
  17. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9 (8), 772–772. https://doi.org/10.1038/nmeth.2109 DOI: https://doi.org/10.1038/nmeth.2109
  18. FitzSimons, V. (1958) On a small collection of reptiles and amphibians from the Inyanga District, S. Rhodesia. Occasional Papers of the National Museum of Southern Rhodesia, 3, 204–214.
  19. Fricke, R., Durville, P., Bernardi, G., Borsa, P., Mou-Tham, G. & Chabanet, P. (2013) Checklist of the shore fishes of Europa Island, Mozambique Channel, southwestern Indian Ocean, including 302 new records. Stuttgarter Beiträge zur Naturkunde, A, Neue Serie, 6, 247–276.
  20. Gamble, T., Greenbaum, E., Jackman, T.R. & Bauer, A.M. (2015) Into the light: diurnality has evolved multiple times in geckos. Biological Journal of the Linnean Society, 115, 896–910. https://doi.org/10.1111/bij.12536 DOI: https://doi.org/10.1111/bij.12536
  21. Gatesy, J. & Springer, M.S. (2014) Phylogenetic analysis at deep timescales: unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Molecular Phylogenetics and Evolution, 80, 231–266. https://doi.org/10.1016/j.ympev.2014.08.013 DOI: https://doi.org/10.1016/j.ympev.2014.08.013
  22. Gippner, S., Travers, S.L., Scherz, M.D., Colston, T.J., Lyra, M.L., Ashwini, V.M., Multzsch, M., Nielson, S.V., Rancilhac, L., Glaw, F., Bauer, A.M. & Vences, M. (2021) A comprehensive phylogeny of dwarf geckos of the genus Lygodactylus, with insights into their systematics and morphological variation. Molecular Phylogenetics and Evolution, 165, 107311. https://doi.org/10.1016/j.ympev.2021.107311 DOI: https://doi.org/10.1016/j.ympev.2021.107311
  23. Hawlitschek, O. & Glaw, F. (2012) The complex colonization history of nocturnal geckos (Paroedura) in the Comoros Archipelago. Zoological Scripta, 42 (2), 135–150. https://doi.org/10.1111/zsc.12001 DOI: https://doi.org/10.1111/zsc.12001
  24. Hawlitschek, O., Garrido, S.R. & Glaw, G. (2016a). How marine currents influenced the widespread natural overseas dispersal of reptiles in the Western Indian Ocean. Journal of Biogeography, 44, 1426–1440. https://doi.org/10.1111/jbi.12940 DOI: https://doi.org/10.1111/jbi.12940
  25. Hawlitschek, O., Scherz, M.D., Straube, N. & Glaw, F. (2016b) Resurrection of the Comoran fish scale gecko Geckolepis humbloti Vaillant, 1887 reveals a disjunct distribution caused by natural overseas dispersal. Organisms Diversity and Evolution, 16, 289–298. https://doi.org/10.1007/s13127-015-0255-1 DOI: https://doi.org/10.1007/s13127-015-0255-1
  26. Hawlitschek, O., Toussant, E.F.A., Gehring, P.-S., Ratsoavina, F.M., Cole, N., Crottini, A., Nopper, J., Lam, A.W., Vences, M. & Glaw, F. (2017) Gecko phylogeography in the Western Indian Ocean region: the oldest clade of Ebenavia inunguis lives on the youngest island. Journal of Biogeography, 44, 409–420. https://doi.org/10.1111/jbi.12912 DOI: https://doi.org/10.1111/jbi.12912
  27. Hewitt, J. (1926) Descriptions of some new species of batrachians and lizards from S. Africa. Annals of the Natal Museum, 5 (3), 435–448.
  28. Jacobson, N.H.G. (1992) New Lygodactylus taxa (Reptilia: Gekkonidae) from the Transvaal. Bonner Zoologische Beiträge, 43 (4), 527–542.
  29. Jacobson, N.H.G. (1994) A new subspecies of Lygodactylus ocellatus (Roux) (Lacertilia: Gekkonidae) from the Soutpansberg, South Africa. Journal of African Zoology, 108 (3), 231–236.
  30. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30 (4), 772–780. https://doi.org/10.1093/molbev/mst010 DOI: https://doi.org/10.1093/molbev/mst010
  31. Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33 (7), 1870–1874. https://doi.org/10.1093/molbev/msw054 DOI: https://doi.org/10.1093/molbev/msw054
  32. Lambs, L., Mangion, P., Mougin, E. & Fromard, F. (2016) Water cycle and salinity dynamics in the mangrove forests of Europa and Juan de Nova Islands, southwest Indian Ocean. Rapid Communications in Mass Spectrometry, 30, 311–320. https://doi.org/10.1002/rcm.7435 DOI: https://doi.org/10.1002/rcm.7435
  33. Loveridge, A. (1941) New geckos (Phelsuma and Lygodactylus), snake (Lepotyphlops) and frog (Phrynobarachits) from Pemba Island, East Africa. Proceedings of the Biological Society, Washington, 54 (8), 175–178.
  34. Loveridge, A. (1947) Revision of the African lizards of the family Gekkonidae. Bulletin of the. Museum of Comparative Zoology, Harvard, 98, 1–469.
  35. Manthey, J.D., Campillo, L.C., Burns, K.J. & Moyle, R.G. (2016) Comparison of target-capture and restriction-site associated DNA sequencing for phylogenomics: a test in cardinalid tanagers (Aves, Genus: Piranga). Systematic Biology, 65, 640–650. https://doi.org/10.1093/sysbio/syw005 DOI: https://doi.org/10.1093/sysbio/syw005
  36. Marques, M.P., Ceríaco, L.M.P., Buehler, M.D., Bandeira, S.A., Janota, J.M. & Bauer, A.M. (2020) A revision of the dwarf geckos, genus Lygodactylus (Squamata: Gekkonidae), from Angola, with description of three new species. Zootaxa, 4853 (3), 301–352. https://doi.org/10.11646/zootaxa.4853.3.1 DOI: https://doi.org/10.11646/zootaxa.4853.3.1
  37. Masters, J.C., Génin, F., Zhang, Y., Pellen, R., Huck, T., Mazza, P.P.A., Rabineau, M., Doucouré & M., Aslanian, D. (2020) Biogeographic mechanisms involved in the colonization of Madagascar by African vertebrates: Rifting, rafting and runways. Journal of Biogeography, 48, 492–510. https://doi.org/10.1111/jbi.14032 DOI: https://doi.org/10.1111/jbi.14032
  38. Mazza, P.P.A., Buccianti, A. & Savorelli, A. (2019) Grasping at straws: a re-evaluation of sweepstakes colonisation of islands by mammals. Biological Reviews, 94, 1364–1380. https://doi.org/10.1111/brv.12506 DOI: https://doi.org/10.1111/brv.12506
  39. Mezzasalma, M., Andreone, F., Aprea, G., Glaw, F., Odierna, G. & Guarino, F.M. (2017) Molecular phylogeny, biogeography and chromosome evolution of Malagasy geckos of the genus Lygodactylus (Squamata, Gekkonidae). Zoological Scripta, 46, 42–54. https://doi.org/10.1111/zsc.12188 DOI: https://doi.org/10.1111/zsc.12188
  40. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, Louisiana, 14 November 2010, 1–8. https://doi.org/10.1109/GCE.2010.5676129 DOI: https://doi.org/10.1109/GCE.2010.5676129
  41. Moreau, R.E. & Pakenham, R.H.W. (1940) The land vertebrates of Pemba, Zanzibar, and Mafia: a zoogeographical study. Proceedings of the Zoological Society, London, 110 (A), 97–128. https://doi.org/10.1111/j.1469-7998.1941.tb08463.x DOI: https://doi.org/10.1111/j.1469-7998.1941.tb08463.x
  42. Pakenham, R.H.W. (1983) The reptiles and amphibians of Zanzibar and Pemba Islands. Journal of the East Africa Natural History Society and National Museum, 177, 1–40.
  43. Pasteur, G. (1965) Recherches sur l’évolution des lygodactyles, lézards afromalgaches actuels. Travaux de l’Institut Scientifique Chérifien, Série Zoologie, 29, 1–132.
  44. Pasteur, G. (1995) Biodiversité et reptiles: diagnoses de sept nouvelles espèces fossiles et actuelles du genre de lézards Lygodactylus (Sauria, Gekkonidae). Dumerilia, 2, 1–21.
  45. Portik, D.M., Travers, S.L., Bauer, A.M. & Branch, W.R. (2013) A new species of Lygodactylus (Squamata: Gekkonidae) endemic to Mount Namuli, an isolated ‘sky island’ of Northern Mozambique. Zootaxa, 3710 (5), 415–435. https://doi.org/10.11646/zootaxa.3710.5.2 DOI: https://doi.org/10.11646/zootaxa.3710.5.2
  46. Pough, F.H. (2016) Herpetology. 4th Edition. Sinauer Associates. Inc., Publishers Sunderland, Massachusetts, xvi + 591 pp.
  47. Puente, M., Glaw, F., Vieites, D.R. & Vences, M. (2009) Review of the systematics, morphology and distribution of Malagasy dwarf geckos, genera Lygodactylus and Microscalabotes (Squamata: Gekkonidae). Zootaxa, 2103, 1–76. https://doi.org/10.11646/zootaxa.2103.1.1 DOI: https://doi.org/10.11646/zootaxa.2103.1.1
  48. Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21, 609–620. https://doi.org/10.1111/1755-0998.13281 DOI: https://doi.org/10.1111/1755-0998.13281
  49. Rebelo, A.D., Bates, M.F., Burger, M., Branch, W.R. & Conradie, W. (2019) Range expansion of the Common Dwarf Gecko, Lygodactylus capensis: South Africa’s most successful reptile invader. Herpetology Notes, 12, 643–650.
  50. Riaux-Gobin, C. & Witkowski, A. (2012) Small-sized and discoid species of the genus Cocconeiopsis (Bacillariophyta) on Holothuria atra (Juan de Nova, Mozambique Channel). Phytotaxa, 54, 43–58. https://doi.org/10.11646/phytotaxa.54.1.5 DOI: https://doi.org/10.11646/phytotaxa.54.1.5
  51. Rocha, S., Carretero, M.A., Vences, M., Glaw, F. & Harris, D.J. (2006) Deciphering patterns of transoceanic dispersal: the evolutionary origin and biogeography of coastal lizards (Cryptoblepharus) in the Western Indian Ocean region. Journal Biogeography, 33, 13–22. https://doi.org/10.1111/j.1365-2699.2005.01375.x DOI: https://doi.org/10.1111/j.1365-2699.2005.01375.x
  52. Rocha, S., Vences, M., Glaw, F., Posada, D. & Harris, D.J. (2009) Multigene phylogeny of Malagasy day geckos of the genus Phelsuma. Molecular Phylogenetics and Evolution, 52, 530–537. https://doi.org/10.1016/j.ympev.2009.03.032 DOI: https://doi.org/10.1016/j.ympev.2009.03.032
  53. Rödder, D., Hawlitschek, O. & Glaw, F. (2010) Environmental niche plasticity of the endemic gecko Phelsuma parkeri Loveridge 1941 from Pemba Island, Tanzania: a case study of extinction risk on flat islands by climate change. Tropical Zoology, 23 (1), 35–49.
  54. Röll, B. (2001) Multiple origin of diurnality in geckos: evidence from eye lens crystallins. Naturwissenschaften, 88, 293–296. https://doi.org/10.1007/s001140100227 DOI: https://doi.org/10.1007/s001140100227
  55. Röll, B., Pröhl, H. & Hoffmann, K.-P. (2010) Multigene phylogenetic analysis of Lygodactylus dwarf geckos (Squamata, Gekkonidae). Molecular Phylogenetics and Evolution, 56 (1), 327–335. https://doi.org/10.1016/j.ympev.2010.02.002 DOI: https://doi.org/10.1016/j.ympev.2010.02.002
  56. Röll, B. (2013) Tagaktive Zwerggeckos der Gattung Lygodactylus. Natur und Tier Verlag, Münster, 120 pp.
  57. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029 DOI: https://doi.org/10.1093/sysbio/sys029
  58. Sanchez, M. & Probst, J.-M. (2015) L’herpétofaune terrestre de l’île d’Europa (Océan Indien, Canal du Mozambique): synthèse des connaissances et nouvelles données sur la répartition de l’écologie des espèces en vue de leur conservation. Bulletin de la Société Herpétologique de France, 145, 63–76.
  59. Sanchez, M., Choeur, A., Bignon, F. & Laubin, A. (2019) Reptiles of the Îles Éparses, Indian Ocean: Inventory, distribution, and conservation status. Herpetological Conservation and Biology, 14 (2), 481–502.
  60. Spawls, S., Howell, K., Hinkel, H. & Menegon, M. (2018) A Field Guide to East African Reptiles. Bloomsbury, London, New Dehli, New York and Sydney, 624 pp.
  61. Stamatakis, A. (2014) RaxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 DOI: https://doi.org/10.1093/bioinformatics/btu033
  62. Stockley, G.M. (1942) The geology of the Zanzibar Protectorate and its relation to the East African mainland. Geological Magazine, 79 (4), 233–240. https://doi.org/10.1017/S0016756800073921 DOI: https://doi.org/10.1017/S0016756800073921
  63. Travers, S.L., Jackman, T.R. & Bauer, A.M. (2014) A molecular phylogeny of Afromontane dwarf geckos (Lygodactylus) reveals a single radiation and an increased species diversity in a South African montane center of endemism. Molecular Phylogenetics and Evolution, 80, 31–42. https://doi.org/10.1016/j.ympev.2014.07.017 DOI: https://doi.org/10.1016/j.ympev.2014.07.017
  64. Uetz, P., Freed, P., Aguilar, R. & Hošek, J. (Eds.) (2022) The Reptile Database. Available from: http//www.reptile-database.org (accessed 8 September 2022)
  65. Vanzolini, P.E. (1968) Lagartos brasileiros da familia Gekkonidae (Sauria). Arquivos de Zoologia, 17 (1), 1–84. https://doi.org/10.11606/issn.2176-7793.v17i1p1-84 DOI: https://doi.org/10.11606/issn.2176-7793.v17i1p1-84
  66. Vences, M., Multzsch, M., Gippner, S., Miralles, A., Crottini, A., Gehring, P.-S., Rakotoarison, A., Ratsoavina, F.M., Glaw, F. & Scherz, M.D. (2022) Integrative revision of the Lygodactylus madagascariensis group reveals an unexpected diversity of little brown geckos in Madagascar’s rainforest. Zootaxa, 5179 (1), 1–61. https://doi.org/10.11646/zootaxa.5179.1.1 DOI: https://doi.org/10.11646/zootaxa.5179.1.1
  67. Vences, M., Miralles, A., Brouillet, S., Ducasse, J., Fedosov, A., Kharchev, V., Kostadinov, I., Kumari, S., Patmanidis, S., Scherz, M.D., Puillandre, N. & Renner, S.S. (2021) iTaxoTools 0.1: Kickstarting a specimen-based software toolkit for taxonomists. Megataxa, 6, 77–92. https://doi.org/10.11646/megataxa.6.2.1 DOI: https://doi.org/10.11646/megataxa.6.2.1
  68. Zimkus, B.M., Lawson, L.P., Barej, M.F., Barratt, C.D., Channing, A., Dash, K.M., Dehling, J.M., Du Preez, L., Gehring, P.-S., Greenbaum, E., Gvozdík,V., Harvey, J., Kielgast, J., Kusamba, C., Nagy, Z.T., Pabijan, M., Penner, J., Rödel, M.-O., Vences, M. & Lötters, S. (2017) Leapfrogging into new territory: How Mascarene ridged frogs diversified across Africa and Madagascar to maintain their ecological niche. Molecular Phylogenetics and Evolution, 106, 254–269. https://doi.org/10.1016/j.ympev.2016.09.018 DOI: https://doi.org/10.1016/j.ympev.2016.09.018