Abstract
Species within the northwest Australian clade of Hypseleotris (six species) and the genus Kimberleyeleotris (two species) are reviewed following the recording of new populations in the region and a molecular study of the group that identified three undescribed candidate species. Based on the analysis of extensive morphological and nuclear and mitochondrial molecular datasets, Kimberleyeleotris is here formally synonymised with Hypseleotris. Furthermore, three species from the Kimberley region, Western Australia, are described to science: Hypseleotris maranda sp. nov., Hypseleotris wunduwala sp. nov., and Hypseleotris garawudjirri sp. nov. The presence of, or number of scales across the head and body, the pattern of sensory papillae on the head, fin ray counts, dorsal and anal fin colouration (particularly in breeding males), and body depth, can be used to distinguish the members of the northwest Australia lineage. Furthermore, the newly described species were genetically separated from all northwest Australian congeners by K2P distances ranging from 7.8–11.3% based on the CO1 gene, and 7.7–16.3 % based on the entire mitochondrial genome. Two of the new species, H. maranda sp. nov. and H. wunduwala sp. nov., have extremely narrow ranges being found in single sub-catchments of the Roe and King Edward Rivers respectively. On the other hand, H. garawudjirri sp. nov. is moderately widespread, being found across the Charnley, Calder, and Sale rivers. While the conservation risk to H. maranda sp. nov. and H. wunduwala sp. nov. is inherently high due to their small range, there are currently no obvious local threatening processes to either of these species given their remote locations that are little impacted by human activities.
References
- Allen, G.R., Midgley, S.H. & Allen, M. (2002) s.n. In: Field Guide to the Freshwater Fishes of Australia. Western Australian Museum, Perth, Western Australia, pp. 236–239.
- Allen, G.R. & Leggett, R. (1990) A collection of freshwater fishes from the Kimberley region of Western Australia. Records of the Western Australian Museum, 14, 527–545.
- April, J., Mayden, R.L., Hanner, R.H. & Bernatchez, L. (2011) Genetic calibration of species diversity among North America’s freshwater fishes. Proceedings of the National Academy of Sciences, 108, 10602–10607. https://doi.org/10.1073/pnas.1016437108 DOI: https://doi.org/10.1073/pnas.1016437108
- Birdsong, R.S., Murdy, E.O. & Pezold, F.L. (1988) A study of the vertebral column and median fin osteology in gobioid fishes with comments on gobioid relationships. Bulletin of Marine Science, 42, 174–214.
- Cheinmora, D., Charles, A., Karadada, T., Bernadette, W., Nyalerin, F., Waina, L., Punchi, M., Chalarimeri, A., Unghango, D., Saunders, T., Sefton, M., Vigilante, T. & Wightman, G. (2017) Belaa Plants and Animals: Biocultural Knowledge of the Kwini People of the Far North Kimberley, Australia. Batchelor Institute Press, Batchelor, 283 pp.
- de Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology 56, 879–886. https://doi.org/10.1080/10635150701701083 DOI: https://doi.org/10.1080/10635150701701083
- de Groeve, J., Kusumoto, B., Koene, E., Kissling, W.D., Seijmonsbergen, A.C., Hoeksema, B.W., Yasuhara, M., Norder, S.J., Cahyarini, S.Y., van der Geer, A., Meijer, H.J.M., Kubota, Y. & Rijsdijk, K.F. (2022) Global raster dataset on historical coastline positions and shelf sea extents since the Last Glacial Maximum. Global Ecology and Biogeography 31(11), 2162–2171. https://doi.org/10.1111/geb.13573 DOI: https://doi.org/10.1111/geb.13573
- Hammer, M.P. & Moore, G.I. (2023) Wilinggin-West Kimberley Bush Blitz expedition: freshwater fishes. Report to the Director of National Parks, Canberra. Western Australian Museum, Perth. [in prep]
- Hoese, D.F. & Allen, G.R. (1983) A review of the gudgeon genus Hypseleotris (Pisces: Eleotridae) of Western Australia, with descriptions of three new species. Records of the Western Australian Museum, 10, 243–261.
- Hoese, D.F. & Allen, G.R. (1987) New Australian fishes Part 10. A new genus and two new species of freshwater Eleotrid fishes (Gobioidei) from the Kimberley region of Western Australia. Memoirs of the Museum of Victoria, 48, 35–42. https://doi.org/10.24199/j.mmv.1987.48.10 DOI: https://doi.org/10.24199/j.mmv.1987.48.10
- Hoese, D.F. (2018) Hypseleotris kimberleyensis Hoese & Allen 1982. In: Australian Faunal Directory. Australian Biological Resources Study, Canberra. [viewed 19 April 2022]
- Hoese, D.F. (2018) Hypseleotris ejuncida Hoese & Allen 1982. In: Australian Faunal Directory. Australian Biological Resources Study, Canberra. [viewed 19 April 2022]
- Hubbs, C.L. & Lagler, K.F. (1947) Fishes of the Great Lakes Region. Cranbrook Institute of Science, Bloomfield Hills, Michigan, pp. 19–26.
- Krefft, G. (1864) Notes on Australian freshwater fishes and descriptions of four new species. Proceedings of the Zoological Society of London, 1864, 182–184.
- Keith, P. & Mennesson, M.I. (2023) Revision of Hypseleotris (Teleostei: Eleotridae) from Indo-Pacific Islands using molecular and morphometric approaches, with description of one new species. Zoological Journal of the Linnean Society, zlad003. DOI: https://doi.org/10.1093/zoolinnean/zlad003
- Larson, H.K. (2007) A new species of carp gudgeon, ‘Hypseleotris’ (Pisces: Gobioidei: Eleotridae), from the Katherine River system, Northern Territory. Beagle: Records of the Museums and Art Galleries of the Northern Territory, 23, 111–117. https://doi.org/10.5962/p.287430 DOI: https://doi.org/10.5962/p.287430
- Le Feuvre, M.C., Dempster, T., Shelley, J.J., Davis, A.M. & Swearer, S.E. (2021). Range restriction leads to narrower ecological niches and greater extinction risk in Australian freshwater fish. Biodiversity and Conservation, 30 (11), 2955–2976. DOI: https://doi.org/10.1007/s10531-021-02229-0
- Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, 2010, 1–8. https://doi.org/10.1109/GCE.2010.5676129 DOI: https://doi.org/10.1109/GCE.2010.5676129
- Martin, H.A. (2006) Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments, 66, 533–563. https://doi.org/10.1016/j.jaridenv.2006.01.009 DOI: https://doi.org/10.1016/j.jaridenv.2006.01.009
- McGowran, B., Holdgate, G.R., Li, Q. & Gallagher, S.J. (2004) Cenozoic stratigraphic succession in southeastern Australia. Australian Journal of Earth Sciences, 51, 459–496. https://doi.org/10.1111/j.1400-0952.2004.01078.x DOI: https://doi.org/10.1111/j.1400-0952.2004.01078.x
- Morgan, D., Charles, A., Nulgit, P. & Cheinmora, D. (2009) Fishes of the King Edward and Carson Rivers with their Belaa and Ngarinyin names. Report to Land & Water Australia. Available from: https://researchportal.murdoch.edu.au/esploro/outputs/report/Fishes-of-the-King-Edward-and/991005544318507891#file-0 (accessed 17 May 2023)
- Pepper, M., Fujita, M.K., Moritz, C. & Keogh, J.S. (2011a) Palaeoclimate change drove diversification among isolated mountain refugia in the Australian arid zone. Molecular Ecology, 20, 1529–1545. https://doi.org/10.1111/j.1365-294X.2011.05036.x DOI: https://doi.org/10.1111/j.1365-294X.2011.05036.x
- Pepper, M., Ho, S., Fujita, M.K. & Keogh, J.S. (2011b) The genetic legacy of aridification: Miocene refugia fostered diversification while Pleistocene climate cycles erased diversity in desert lizards. Molecular Phylogenetics and Evolution, 61, 750–759. https://doi.org/10.1016/j.ympev.2011.08.009 DOI: https://doi.org/10.1016/j.ympev.2011.08.009
- Pusey, B.J., Kennard, M.J., Burrows, D., Perna, C., Kyne, P., Cook, B. & Hughes, J. (2011) Freshwater fish. In: Pusey, B.J. (Ed.), Aquatic Biodiversity in Northern Australia: Patterns, Threats and Future. Charles Darwin University Press, Darwin, pp. 82.
- Shelley, J.J., Holland, O.J., Swearer, S.E., Dempster, T., le Feuvre, M.C., Sherman, C.D.H. & Miller, A.D. (2022) Landscape context and dispersal ability as determinants of population genetic structure in freshwater fishes. Freshwater Biology, 67, 338–352. https://doi.org/10.1111/fwb.13844 DOI: https://doi.org/10.1111/fwb.13844
- Shelley, J.J., Morgan, D.L., Hammer, M.P., Le Feuvre, M.C, Moore, G.I., Gomon, M.F., Allen, M.G. & Saunders, T. (2018a) A Field Guide to the Freshwater Fishes of the Kimberley. Murdoch University Print Production Team, Perth, 262 pp.
- Shelley, J.J., Swearer, S.E., Adams, M., Dempster, T., Le Feuvre, M.C., Hammer, M.P. & Unmack, P.J. (2018b) Cryptic biodiversity in the freshwater fishes of the Kimberley endemism hotspot, northwestern Australia. Molecular Phylogenetics and Evolution, 127, 843–858. https://doi.org/10.1016/J.YMPEV.2018.06.032 DOI: https://doi.org/10.1016/j.ympev.2018.06.032
- Shelley, J.J., Dempster, T., Le Feuvre, M.C., Unmack, P.J., Laffan, S.W. & Swearer, S.E. (2019) A revision of the bioregionalisation of freshwater fish communities in the Australian Monsoonal Tropics. Ecology and Evolution, 9 (8), 4568–4588. https://doi.org/10.1002/ece3.5059 DOI: https://doi.org/10.1002/ece3.5059
- Shelley, J.J., Swearer, S.E., Dempster, T., Adams, M., Le Feuvre, M.C., Hammer, M.P. & Unmack, P.J. (2020) Plio‐Pleistocene sea‐level changes drive speciation of freshwater fishes in north‐western Australia. Journal of Biogeography, 47, 1727–1738. https://doi.org/10.1111/jbi.13856 DOI: https://doi.org/10.1111/jbi.13856
- Shelley, J.J., Unmack, P.J., Dempster, T., Le Feuvre, M.C. & Swearer, S.E. (2019) The Kimberley, north-western Australia, as a cradle of evolution and endemic biodiversity: an example using grunters (Terapontidae). Journal of Biogeography 46 (11), 2420–2432. https://doi.org/10.1111/jbi.13682 DOI: https://doi.org/10.1111/jbi.13682
- Shipway, B. (1950) Notes on the aquatic natural history of the lower Murchison River. Western Australian Naturalist, 2, 73–77.
- Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 DOI: https://doi.org/10.1093/bioinformatics/btu033
- Thacker, C. & Unmack, P.J. (2005) Phylogeny and biogeography of the eleotrid genus Hypseleotris (Teleostei: Gobioidei: Eleotridae), with redescription of H. cyprinoides. Records of the Australian Museum, 57, 1–13. https://doi.org/10.3853/j.0067-1975.57.2005.1436 DOI: https://doi.org/10.3853/j.0067-1975.57.2005.1436
- Thacker, C.E. (2014) Species and shape diversification are inversely correlated among gobies and cardinalfishes (Teleostei: Gobiiformes). Organisms Diversity & Evolution, 14, 419–436. https://doi.org/10.1007/s13127-014-0175-5 DOI: https://doi.org/10.1007/s13127-014-0175-5
- Thacker, C.E. (2017) Patterns of divergence in fish species separated by the Isthmus of Panama. BMC Evolutionary Biology, 17, 1–14. https://doi.org/10.1186/s12862-017-0957-4 DOI: https://doi.org/10.1186/s12862-017-0957-4
- Thacker, C.E., Geiger, D.L. & Unmack, P.J. (2022a) Species delineation and systematics of a hemiclonal hybrid complex in Australian freshwaters (Gobiiformes: Gobioidei: Eleotridae: Hypseleotris). Royal Society Open Science, 9, 220201. https://doi.org/10.1098/rsos.220201 DOI: https://doi.org/10.1098/rsos.220201
- Thacker, C.E., Shelley, J.J., McCraney, W.T., Adams, M., Hammer, M.P. & Unmack, P.J. (2022b) Phylogeny, diversification, and biogeography of a hemiclonal hybrid system of native Australian freshwater fishes (Gobiiformes: Gobioidei: Eleotridae: Hypseleotris). BMC Ecology and Evolution, 22, 1–23. https://doi.org/10.1186/s12862-022-01981-3 DOI: https://doi.org/10.1186/s12862-022-01981-3
- Ward, R.D. (2009) DNA barcode divergence among species and genera of birds and fishes. Molecular Ecology Resources, 9, 1077–1085. https://doi.org/10.1111/j.1755-0998.2009.02541.x DOI: https://doi.org/10.1111/j.1755-0998.2009.02541.x
- Yang, Z. (2007) PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24, 1586–1591. https://doi.org/10.1093/molbev/msm088 DOI: https://doi.org/10.1093/molbev/msm088
- Yang, Z. & Rannala, B. (2006) Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Molecular Biology and Evolution, 23, 212–226. https://doi.org/10.1093/molbev/msj024 DOI: https://doi.org/10.1093/molbev/msj024