Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-07-31
Page range: 105-125
Abstract views: 448
PDF downloaded: 34

Two new species of the bathyal holothurian genus Pannychia (Elasipodida, Laetmogonidae) from Japanese waters

Center for Molecular Biodiversity Research; National Museum of Nature and Science; 4-1-1 Amakubo; Tsukuba; Ibaraki; 3050005; Japan; Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR); Japan Agency for Marine-Earth Science and Technology (JAMSTEC); 2-15 Natsushima-cho; Yokosuka; Kanagawa; 2370061; Japan; Department of Zoology; National Museum of Nature and Science; 4-1-1 Amakubo; Tsukuba; Ibaraki; 3050005; Japan; Graduate School of Science; The University of Tokyo; 7-3-1 Hongo; Bunkyo-ku; Tokyo; 1130033; Japan
Department of Zoology; National Museum of Nature and Science; 4-1-1 Amakubo; Tsukuba; Ibaraki; 3050005; Japan; Graduate School of Science; The University of Tokyo; 7-3-1 Hongo; Bunkyo-ku; Tokyo; 1130033; Japan; Misaki Marine Biological Station; Graduate School of Science; The University of Tokyo; 1024 Koajiro; Misaki; Miura; Kanawaga; 2380225; Japan
Misaki Marine Biological Station; Graduate School of Science; The University of Tokyo; 1024 Koajiro; Misaki; Miura; Kanawaga; 2380225; Japan
Department of Zoology; National Museum of Nature and Science; 4-1-1 Amakubo; Tsukuba; Ibaraki; 3050005; Japan; Graduate School of Science; The University of Tokyo; 7-3-1 Hongo; Bunkyo-ku; Tokyo; 1130033; Japan
Coleoptera Deep sea sea cucumber namako X-ray µCT calcareous ring key to species western Japan

Abstract

Sea cucumbers are one of the most common large animals in the deep-sea benthic communities, and those of the genus Pannychia are particularly abundant in the bathyal North Pacific Ocean. In Japanese waters, three species of Pannychia have been reported, mainly from the northern and eastern parts of the country. Here, we describe two new species from the western part of Japan. These two new species were placed in Pannychia by the presence of dorsal papillae on the ventrolateral radii and the presence of large wheel ossicles with rim teeth. They are distinguished from all other nominal species of Pannychia on the basis of the morphological characteristics of their body wheel ossicles. Pannychia nagasakimaruae sp. nov. has a unique ossicle composition in its dorsal and ventral body walls: four forms of wheel ossicles. Pannychia rinkaimaruae sp. nov. differs from other congeners in its small wheel ossicles in the dorsal and ventral body walls, which have conical rim teeth. We barcoded partial COI gene sequences from holotypes and paratypes of two new Japanese species. Our molecular phylogenetic analysis showed that these two new morphologically recognized Japanese species form distinct clades separated from other Pacific Pannychia species, so that the two new Japanese species were also supported by genetic results. In addition, we describe and visualize the poorly calcified calcareous rings of the two new species using X-ray μCT system, a useful method for observing such structures, which are important structures in holothurian anatomy.

 

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410. httpss://doi.org/10.1016/S0022-2836(05)80360-2
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402. httpss://doi.org/10.1093/nar/25.17.3389
  3. Carney, R.S. & Carey, A.G. Jr. (1976) Distribution pattern of holothurians on the Northeastern Pacific (Oregon U.S.A.) continental shelf slope, and abyssal plain. Thalassia Jugoslavica, 12, 67–74.
  4. Ekman, S. (1926) Systematisch-phylogenetische Studien über Elasipoden und Aspidochiroten. Zoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere, 47, 429–540.
  5. Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39 (4), 783–791. httpss://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  6. Fisher, W.K. (1907) The holothurians of the Hawaiian Islands. Proceedings of the United States National Museum, 32, 637–744.
  7. https://doi.org/10.5479/si.00963801.32-1555.637
  8. Gebruk, A.V., Kremenetskaia, A. & Rouse, G.W. (2020) A group of species “Psychropotes longicauda” (Psychropotidae, Elasipodida, Holothuroidea) from the Kuril-Kamchatka Trench area (North-West Pacific). Progress in Oceanography, 180, 102222. httpss://doi.org/10.1016/j.pocean.2019.102222
  9. Gubili, C., Ross, E., Billett, D.S.M., Yool, A., Tsairidis, C., Ruhl, H.A., Rogacheva, A., Masson, D., Tyler, P.A. & Hauton, C. (2017) Species diversity in the cryptic abyssal holothurian Psychropotes longicauda (Echinodermata). Deep-Sea Research Part II: Topical Studies in Oceanography, 137, 288–296. httpss://doi.org/10.1016/j.dsr2.2016.04.003
  10. Hansen, B. (1975) Systematics and biology of the deep-sea holothurians Part. 1 Elasipoda. In: Wolff, T. (Ed.), Galathea Report. Vol. 13. Scientific Results of the Danish Deep-Sea Expedition Round the World 1950–52. The Galathea Committee, Copenhagen, pp. 1–262.
  11. Herring, P. (2002) The biology of the deep Ocean. Oxford University Press, Oxford, 314 pp.
  12. Hoareau, T.B. & Boissin, E. (2010) Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata. Molecular Ecology Resources, 10, 960–967. httpss://doi.org/10.1111/j.1755-0998.2010.02848.x
  13. Kerr, A.M. & Kim, J. (2001) Phylogeny of Holothuroidea (Echinodermata) inferred from morphology. Zoological Journal of the Linnean Society, 133, 63–81. httpss://doi.org/10.1006/zjls.2000.0280
  14. Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions throuph comprarative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. httpss://doi.org/10.1007/BF01731581
  15. Kishinouye, K. (1894) Note on the development of a Holothurian spicule. Zoologischer Anzeiger, 17, 146–147.
  16. Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870–1874. httpss://doi.org/10.1093/molbev/msw054
  17. Ludwig, H. (1889 in 1889–1892) Die Seewalzen. In: Bronn, H.G. (Ed.), Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt in Wort und Bild. Part 3: Echinodermen (Stachelhäuter). First book. 2. C.F. Winter, Leipzig, pp. 1–176.
  18. Ludwig, H. (1893) Reports on the Dredging Operations off the West Coast of Central America to the Galapagos, to the West Coast of Mexico, and to the Gulf of California, in charge of Alexander Agassiz, carried on the the U.S. Fish Commission Steamer “Albatross,” during 1891, Lieut. Commander Z.L. Tanner, U.S.N., Commanding. IV. Vorläufiger Bericht über die erbeuteten Holothurien. Bulletin of the Museum of Comparative Zoology at Harvard College, in Cambridge, 28, 105–114.
  19. Ludwig, H. (1894) Reports on an exploration off the West Coasts of Mexico, Central and South America, and off the Galapagos Islands. in Charge of Alexander Agassiz, by the U.S. Fish Commission Steamer “Albatross, ” during 1891, Lieut. Commander Z. L. Tanner, U.S.N., Commanding. XII. The Holothuroidea. Memoirs of the Museum of Comparative Zoology, 17 (3), 1–183.
  20. Miller, A.K., Kerr, A.M., Paulay, G., Reich, M., Wilson, N G., Carvajal, J.I. & Rouse, G.W. (2017) Molecular phylogeny of extant Holothuroidea (Echinodermata). Molecular Phylogenetics and Evolution, 111, 110–131. httpss://doi.org/10.1016/j.ympev.2017.02.014
  21. Mitsukuri, K. (1912) Studies on Actinopodous Holothurioidea. Journal of the College of Science, Tokyo Imperial University, 29, 1–284. httpss://doi.org/10.5962/bhl.title.37880
  22. O’Loughlin, P.M., Paulay, G., Davey, N. & Michonneau, F. (2011) The Antarctic region as a marine biodiversity hotspot for echinoderms: Diversity and diversification of sea cucumbers. Deep-Sea Research Part II: Topical Studies in Oceanography, 58, 264–275. httpss://doi.org/10.1016/j.dsr2.2010.10.011
  23. O’Loughlin, P.M., Mackenzie, M. & VandenSpiegel, D. (2013) New sea cucumber species from the seamounts on the Southwest Indian Ocean Ridge (Echinodermata: Holothuroidea: Aspidochirotida, Elasipodida, Dendrochirotida). Memoirs of Museum Victoria, 70, 37–50. httpss://doi.org/10.24199/j.mmv.2013.70.04
  24. Ogawa, A., Morita, T.& Fujita, T. (2020) Elpidia soyoae, a new species of deep-sea holothurian (Echinodermata) from the Japan Trench area. Species Diversity, 25, 153–162. httpss://doi.org/10.12782/specdiv.25.153
  25. Ogawa, A., Kremenetskaia, A., Hiruta, S.F., Shibata, Y., Narimatsu, Y., Miki, S., Morita, T., Tsuchida, S., Fujiwara, Y. & Fujita, T. (2022) Rehabilitation of two deep-sea holothurian species in genus Pannychia from the northwest Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 202, 105099. httpss://doi.org/10.1016/j.dsr2.2022.105099
  26. Ohshima, H. (1915) Report on the Holothurians Collected by the United States Fisheries Steamer “Albatross” in the Northwestern Pacific during the Summer of 1906. Proceedings of the National Museum, 48, 212–291. httpss://doi.org/10.5479/si.00963801.48-2073.213
  27. Okiyama, M. & Suzuki, K. (1985) Nihon no kaiyo seibutsu. [Marine Life in Japan: Ecology of Invasion and Disturbance]. Tokai University Press, Tokyo, 160 pp. [in Japanese]
  28. Okutani, T. (1969) Synopsis of bathyal and abyssal megalo-invertebates from Sagami Bay and the south off Boso Peninsula trawled by the R/V Soyo-Maru. Bulletin of Tokai Regional Fisheries Research Laboratory. [Tôkaiku suisan kenkyûsho kenkyû hôkoku], 57, 1–51.
  29. Pawson, D.L. (1965) The bathyal holothurians of the New Zealand region, Zoology. Publications from Victoria University of Wellington, 39, 1–33.
  30. Pawson, D.L. (1970) The Marine Fauna of New Zealand: Sea Cucumbers (Echinodermata: Holothuroidea). New Zealand Department of Scientific and Industrial Research Bulletin, 201, 1–69.
  31. Pawson, D. & Fell, H. (1965) A revised classification of the dendrochirote holothurians. Breviora, 15, 1–7.
  32. Reich, M. (2012) On Mesozoic laetmogonid sea cucumbers (Echinodermata: Holothuroidea: Elasipodida). Zoosymposia, 7, 185–212. httpss://doi.org/10.11646/zoosymposia.7.1.18
  33. Reich, M. (2015) Different pathways in early evolution of the holothurian calcareous ring? In: Zamora S. & Rábano, I. (Eds.), Progress in Echinoderm Palaeobiology. Cuadernos del Museo Geominero. Vol. 19. Instituto Geológico y Minero de España, Madrid, pp. 137–145.
  34. Saveljeva, T.S. (1933) On the holothurian fauna of the Japan and Okhotsk seas. Issledovaniia Morei SSSR, 19, 37–58. [in Russian]
  35. Sluiter, C.H. (1901a) Die holothurien der Siboga-Expedition. In: Weber, M., (Ed.), Siboga-Expeditie. Vol. 44. Uitkomsten op Zoologisch, Botanisch, Oceanographisch en Geologisch Gebied Verzameld in Nederlandsch Oost-Indie 1899–1900 aan boord H. M. Siboga onder commando van Luitenant ter zee 1e kl. G. F. Tydeman. Brill, E.J., Leiden, pp. 1–134. httpss://doi.org/10.5962/bhl.title.85348
  36. Sluiter, C.H. (1901b) Neue Holothurien aus der Tief-See des Indischen Archipels gesammelt durch die „Siboga-Expedition“. Tijdschrit der Nederlandsche Dierkundige Vereeninging, Serie 2, 7, 1–28.
  37. Smirnov, A.V. (2012) System of the class Holothuroidea. Paleontological Journal, 46, 793–832. httpss://doi.org/10.1134/S0031030112080126
  38. Smith, A.B. & Reich, M. (2013) Tracing the evolution of the holothurian body plan through stem group fossils. Biological Journal of the Linnean Society, 109 (3), 670–681. httpss://doi.org/10.1111/bij.12073
  39. Takeda, M., Hasegawa, K., Saitoh, H., Fujita, T., Namikawa, H., & Kuramochi, T. (2006) 4.4 Kaitei wo irodoru yakushatachi. In: National Science Museum (Ed.), Bihon retto no shizenshi. Natural History of the Japanese Islands. Tokai University Press, Tokyo, pp. 227–251. [in Japanese]
  40. Théel, H. (1879) Preliminary report on the Holothuridae of the exploring voyage of H.M.S. Challenger. under professor sir C. Wyville Thomson F. R. S., Part I. Bihang till Kongl. Svenska Vetensups-Akadeiiens Handlikgar, 5, 1–20.
  41. Théel, H. (1882) Report on the Holothuroidea dredged by the H.M.S. Challenger, during the years 1873–1876. Part I. Report of the Scientific Results of the Voyage of H.M.S. Challenger during the years 1873–76. Zoology, 4 (3), 1–176.
  42. Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Research, 22 (22), 4673–4680. httpss://doi.org/10.1093/nar/22.22.4673
  43. Tsurumi, Y. (1990) Namako no me. [Sea cucumber's eyes]. Chikuma Shobou, Tokyo, 493 pp. [in Japanese]