Abstract
The complete mitogenomes of the subgenus Mylabris (Pseudabris) Fairmaire, 1894, endemic to the Qinghai-Xizang Plateau, are reported for the first time. Three species out of seven, M. hingstoni Blair, 1927, M. longiventris Blair, 1927, and M. przewalskyi (Dokhtouroff, 1887), were sequenced. The sequencing results of mitogenomes were annotated and analyzed. The gene arrangements were consistent with the putative ancestral insect mitogenomes as understood today, including 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, and a noncoding internal control region (CR). The PCGs used the typical start ATN codon and TAA/TAG stop codons. The lengths of three mitogenomes were 15,692 bp, 15,685 bp, and 15,685 bp, with an A + T content of 71.29%, 71.67%, and 71.53%, respectively. The evolution rates of 13 PCGs were compared: The evolution rate of ATP8 was the highest, and that of COX1 was the lowest. Furthermore, the phylogenetic relationships among the genera and tribes of Meloidae were discussed.
References
- Batelka, J. & Hájek, J. (2015) New synonyms, combinations and faunistic records in the genus Denierella Kaszab (Coleoptera: Meloidae). Zootaxa, 4000 (1), 123–130. https://doi.org/10.11646/zootaxa.4000.1.6
- Batelka, J., Kundrata, R. & Bocak, L. (2016) Position and relationships of Ripiphoridae (Coleoptera: Tenebrionoidea) inferred from ribosomal and mitochondrial molecular markers. Annales Zoologici, 66 (1), 113–123. https://doi.org/10.3161/00034541ANZ2016.66.1.008
- Bologna, M.A. & Pinto, J.D. (2001) Phylogenetic studies of Meloidae (Coleoptera), with emphasis on the evolution of phoresy. Systematic Entomology, 26, 33–72.
- Bologna, M.A. & Pinto, J.D. (2002) The Old World genera of Meloidae (Coleoptera): A key and synopsis. Journal of Natural History, 36, 2013–2102. https://doi.org/10.1080/00222930110062318
- Bologna, M.A., Turco, F. & Pinto, D. (2013) The Meloidae (Coleoptera) of Australasia: a generic review, descriptions of new taxa, and a challenge to the current definition of subfamilies posed by exceptional variation in male genitalia. Invertebrate Systematics, 27, 391–427. https://doi.org/10.1071/IS12054
- Boore, J.L. (1999) Animal mitochondrial genomes. Nucleic Acids Research, 27, 1767–1780. https://doi.org/10.1093/nar/27.8.1767
- Cai, C., Tihelka, E., Giacomelli, M., Lawrence, J.F., Ślipiński, A., Kundrata, R., Yamamoto, S., Thayer, M.K., Newton, A.F., Leschen, R.A.B., Gimmel, M.L., Lü, L., Engel, M.S., Bouchard, P., Huang, D., Pisani, D. & Donoghue, P.C.J. (2022) Integrated phylogenomics and fossil data illuminate the evolution of beetles. Royal Society Open Science, 9 (3), 211771. https://doi.org/10.1098/rsos.211771
- Cameron, S.L. (2014) Insect mitochondrial genomics: Implications for evolution and phylogeny. Annual Review of Entomology, 59, 95–117. https://doi.org/10.1146/annurev-ento-011613-162007
- Capella-Gutierrez, S., Silla-Martinez, J.M. & Gabaldon, T. (2009) TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
- Chen, S., Liu, C.H., Hao, Y.M., Liu, Y.Y., Liu, X. & Du, C. (2022) The complete mitochondrial genome of Meloe proscarabaeus (Coleoptera, Meloidae): genome descriptions and phylogenetic inferences. ZooKeys, 1109, 103–114. https://doi.org/10.3897/zookeys.1109.81544
- Crowson, R.A. (1955) The natural classification of the families of Coleoptera. Nathaniel Lloyd & Co., London, 187 pp.
- Dierckxsens, N., Mardulyn, P. & Smits, G. (2016) NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45, e18. https://doi.org/10.1093/nar/gkw955
- Donath, A., Jühling, F., Al-Arab, M., Bernhart, S.H., Reinhardt, F., Stadler, P.F., Middendorf, M. & Bernt, M. (2019) Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Research, 47, 10543–10552. https://doi.org/10.1093/nar/gkz833
- Du, C., He, S., Song, X.H., Liao, Q., Zhang, X.Y. & Yue, B.S. (2016) The complete mitochondrial genome of Epicauta chinensis (Coleoptera: Meloidae) and phylogenetic analysis among coleopteran insects. Gene, 578, 274–280. https://doi.org/10.1016/j.gene.2015.12.036
- Du, C., Zhang, L., Lu, T., Ma, J., Zeng, C., Yue, B. & Zhang, X. (2017) Mitochondrial genomes of blister beetles (Coleoptera, Meloidae) and two large intergenic spacers in Hycleus genera. BMC Genomics, 18, 698. https://doi.org/10.1186/s12864-017-4102-y
- Grant, J.R. & Stothard, P. (2008) The CG View Server: A comparative genomics tool for circular genomes. Nucleic Acids Research, 36, 181–184. https://doi.org/10.1093/nar/gkn179
- Han, X.H., Li, Y.C., Lu, C.D., Liang, G.H. & Zhang, F.P. (2020) The complete mitochondrial genome of Epicauta ruficeps (Coleoptera: Meloidae). Mitochondrial DNA Part B, 5 (3), 2049–2050. https://doi.org/10.1080/23802359.2020.1763213
- Hurst, L.D. (2002) The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends in Genetics, 18, 486–487. https://doi.org/10.1016/s0168-9525(02)02722-1
- Jiang, M., Wei, Q. & Wang, W.Q. (2020) Phylogenetic relationship and characterization of the complete mitochondrial genome of Mylabris calida (Coleoptera:Meloidae). Mitochondrial DNA Part B, 5, 3445–3446. https://doi.org/10.1080/23802359.2020.1823276
- Jie, H., Lei, M.Y., Li, P.M., Feng, X. L., Zeng, D.J., Zhao, G.J., Zhu, J.B., Zhang, C.L., Yu, M., Huang, Y. & Chen, Q. (2016) The complete nucleotide sequence of the mitochondrial genome of Epicauta aptera Kaszab. Mitochondrial DNA Part B, 1(1), 489–490. https://doi.org/10.1080/23802359.2016.1192500
- Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
- Kergoat, G.J., Soldati, L., Clamens, A.-A., Jourdan, H., Jabbour-Zahab, R., Genson, G., Bouchard, P. & Condamine, F.L. (2014) Higher level molecular phylogeny of darkling beetles (Coleoptera: Tenebrionidae). Systematic Entomology, 39, 486–499. https://doi.org/10.1111/syen.12065
- Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772–773. https://doi.org/10.1093/molbev/msw260
- Letunic, I. & Bork, P. (2016) Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 44, W242–W245. https://doi.org/10.1093/nar/gkw290
- Li, X.M., Li, J. & Pan, Z. (2020) New species and new faunistic records of the family Meloidae Gyllenhal, 1810 (Coleoptera: Tenebrionoidea) from China, with a list of meloid specie from Xinjiang. Journal of Asia-Pacific Entomology, 23, 1144–1150. https://doi.org/10.1016/j.aspen.2020.09.006
- Liu, Y.Y., Zhou, Z.C. & Chen, X.S. (2020) Characterization of the complete mitochondrial genome of Epicauta impressicornis (Coleoptera: Meloidae) and its phylogenetic implications for the infraorder Cucujiformia. Journal of Insect Science, 20, 16. https://doi.org/10.1093/jisesa/ieaa021
- López-Estrada, E.K., Sanmartín, L., Uribe, J.E., Abalde, S., Jiménez-Ruiz, Y. & García-París, M. (2022) Mitogenomics and hidden-trait models reveal the role of phoresy and host shifts in the diversification of parasitoid blister beetles (Coleoptera: Meloidae). Molecular Ecology, 31, 2453–2474. https://doi.org/10.1111/mec.16390
- Lowe, T.M. & Chan, P.P. (2016) tRNAscan-SE on-line: search and contextual analysis of transfer RNA genes. Nucleic Acids Research, 44, W54–W57. https://doi.org/10.1093/nar/gkw413
- McKenna, D.D., Shin, S., Ahrens, D., Balke, M., Beza-Beza, C., Clarke, D.J., Donath, A., Escalona, H.E., Friedrich, F., Letsch, H., Liu, S., Maddison, D., Mayer, C., Misof, B., Murin, P.J., Niehuis, O., Peters, R.S., Podsiadlowski, L., Pohl, H., Scully, E.D., Yan, E.V., Zhou, X., Ślipiński, A. & Beutel, R.G. (2019) The evolution and genomic basis of beetle diversity. The Proceedings of the National Academy of Sciences, 116 (49), 24729–24737. https://doi.org/10.1073/pnas.1909655116
- Meng, G., Li, Y., Yang, C. & Liu, S. (2019) MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research, 47, e63. https://doi.org/10.1093/nar/gkz173
- Mora, P., Montiel, E., Palomeque, T. & Lorite, P. (2022) Complete mitochondrial genome of the blister beetle Hycleus scutellatus Rosenhauer, 1856 (Coleoptera, Meloidae). Mitochondrial DNA Part B, 7, 986–988. https://doi.org/10.1080/23802359.2022.2080603
- Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300
- Pan, Z. & Ren, G.D. (2020) New synonyms, combinations and status in the Chinese species of the family Meloidae Gyllenhal, 1810 (Coleoptera: Tenebrionoidea) with additional faunistic records. Zootaxa, 4820 (2), 260–286. https://doi.org/10.11646/zootaxa.4820.2.3
- Pan, Z., Ren, G.D., Wang, X.P. & Bologna, M.A. (2013) Revision of the genus Pseudabris Fairmaire (Coleoptera, Meloidae), an endemic to the Tibetan Plateau, with biogeographical comments. Systematic Entomology, 38, 134–150. https://doi.org/10.1111/j.1365-3113.2012.00651.x
- Perna, N.T. & Kocher, T.D. (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41, 353–358. https://doi.org/10.1007/BF00186547
- Pinto, J.D. & Bologna, M.A. (1999) The New World genera of Meloidae (Coleoptera): A key and synopsis. Journal of Natural History, 33, 569–620. https://doi.org/10.1080/002229399300254
- Ranwez, V., Douzery, E.J.P., Cambon, C., Chantret, N. & Delsuc, F. (2018) MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Molecular Biology and Evolution, 35, 2582–2584. https://doi.org/10.1093/molbev/msy159
- Riccieri, A., Mancini, E., Pitzalis, M., Salvi, D. & Bologna, M.A. (2022) Multigene phylogeny of blister beetles (Coleoptera, Meloidae) reveals extensive polyphyly of the tribe Lyttini and allows redefining its boundaries. Systematic Entomology, 47, 569–580. https://doi.org/10.1111/syen.12547
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
- Salvi, D., Maura, M., Pan, Z. & Bologna, M.A. (2019) Phylogenetic systematics of Mylabris blister beetles (Coleoptera, Meloidae): a molecular assessment using species trees and total evidence. Cladistics, 35, 243–268. https://doi.org/10.1111/cla.12354
- Stothard, P. (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques, 28, 1102–1104. https://doi.org/10.2144/00286ir01
- Timmermans, M.J.T.N., Barton, C., Haran, J., Ahrens, D., Culverwell, C.L., Ollikainen, A., Dodsworth, S., Foster, P.G., Bocak, L. & Vogler, A.P. (2016) Family-level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and phylogenetics. Genome Biology & Evolution, 8 (1), 161–175. https://doi.org/10.1093/gbe/evv241
- Wu, Y.M., Liu, Y.Y. & Chen, X.S. (2018) The complete mitochondrial genomes of Hycleus cichorii and Hycleus phaleratus (Coleoptera: Meloidae). Mitochondrial DNA Part B, 3, 159–160. https://doi.org/10.1080/23802359.2018.1431066
- Yuan, M.L., Zhang, Q.L., Zhang, L., Guo, Z.L., Liu, Y.J., Shen, Y.Y. & Shao, R.F. (2016) High-level phylogeny of the Coleoptera inferred with mitochondrial genome sequences. Molecular Phylogenetics and Evolution, 104, 99–111. https://doi.org/10.1016/j.ympev.2016.08.002
- Zhang, D., Gao, F., Jakovlić, I., Zhou, H., Zhang, J., Li, W.X. & Wang, G.T. (2019) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20, 348–355.
- https://doi.org/10.1111/1755-0998.13096
- Zhou, Z.C., Liu, Y.Y. & Chen, X.S. (2021) Structural features and phylogenetic implications of three new mitochondrial genomes of blister beetles (Coleoptera: Meloidae). Journal of Insect Science, 21 (6), 19. https://doi.org/10.1093/jisesa/ieab100