Abstract
Cabdio occidentalis, new species, is described from the Lake Mashkid basin and the Makran region of Iran. It is distinguished from other species of the genus by a combination of characters: 38–42+1–2 total lateral-line scales, 19–23 predorsal scales, 9–11 pectoral-fin rays, and the absence of a keel between the pelvic-fin base and the genital papilla. The cytochrome c oxidase subunit I (COI) sequence separates C. occidentalis from C. morar, its closest congener, by a p-distance of 5.5%.
References
- Britz, R. (2019) Francis Hamilton’s Gangetic Fishes in colour. A new edition of the 1822 monograph, with reproductions of unpublished coloured illustrations. Ray Society, London, 48 + vii + 405 + vii pp., 228 pls.
- Chaudhury, S. (2010) Cabdio morar. The IUCN Red List of Threatened Species, 2010, e.T166469A6215983. https://doi.org/10.2305/IUCN.UK.2010-4.RLTS.T166469A6215983.en DOI: https://doi.org/10.2305/IUCN.UK.2010-4.RLTS.T166469A6215983.en
- Coad, B.W. (2014) Fishes of Afghanistan. Pensoft, Sofia-Moskow, 393 pp.
- Freyhof, J., Sayyadzadeh, G., Esmaeili, H.R. & Geiger, M.F. (2015) Review of the genus Paraschistura from Iran with description of six new species (Teleostei: Nemacheilidae). Ichthyological Exploration of Freshwaters, 26 (1), 1–48.
- Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59 (3), 307–321. https://doi.org/10.1093/sysbio/syq010 DOI: https://doi.org/10.1093/sysbio/syq010
- Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35 (2), 518–522. https://doi.org/10.1093/molbev/msx281 DOI: https://doi.org/10.1093/molbev/msx281
- Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17 (8), 754–755. https://doi.org/10.1093/bioinformatics/17.8.754 DOI: https://doi.org/10.1093/bioinformatics/17.8.754
- Ivanova, N.V., Zemlak, T.S., Hanner, R.H. & Hebert, P.D.N. (2007) Universal primer cocktails for fish DNA barcoding. Molecular Ecology Resources, 7 (4), 544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x DOI: https://doi.org/10.1111/j.1471-8286.2007.01748.x
- Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., Von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14 (6), 587–589. https://doi.org/10.1038/nmeth.4285 DOI: https://doi.org/10.1038/nmeth.4285
- Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30 (4), 772–780. https://doi.org/10.1093/molbev/mst010 DOI: https://doi.org/10.1093/molbev/mst010
- Katoh, K., Misawa, K., Kuma, K.I. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30 (14), 3059–3066. https://doi.org/10.1093/nar/gkf436 DOI: https://doi.org/10.1093/nar/gkf436
- Kottelat, M. & Freyhof, J. (2007) Handbook of European freshwater fishes. Kottelat, Cornol and Freyhof, Berlin, xiv + 646 pp.
- Lalramliana., Lalronunga, S. & Singh, M. (2019) Cabdio crassus, a new species of cyprinid fish (Teleostei: Cyprinidae) from the Kaladan River of Mizoram, India. Zootaxa, 4657 (1), 159–169. https://doi.org/10.11646/zootaxa.4657.1.7 DOI: https://doi.org/10.11646/zootaxa.4657.1.7
- Liao, T.Y., Ünlü, E. & Kullander, S.O. (2011) Western boundary of the subfamily Danioninae in Asia (Teleostei, Cyprinidae): derived from the systematic position of Barilius mesopotamicus based on molecular and morphological data. Zootaxa, 2880 (1), 31–40. https://doi.org/10.11646/zootaxa.2880.1.3 DOI: https://doi.org/10.11646/zootaxa.2880.1.3
- Mirza, M.R. (1972) Freshwater fishes of Baluchistan Province, Pakistan. Biologica, 18 (2), 153–190.
- Nguyen, L.T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32 (1), 268–274. https://doi.org/10.1093/molbev/msu300 DOI: https://doi.org/10.1093/molbev/msu300
- Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21 (2), 609–620. https://doi.org/10.1111/1755-0998.13281 DOI: https://doi.org/10.1111/1755-0998.13281
- Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic barcode gap discovery for primary species delimitation. Molecular Ecology, 21 (8), 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x DOI: https://doi.org/10.1111/j.1365-294X.2011.05239.x
- Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67 (5), 901–904. https://doi.org/10.1093/sysbio/syy032 DOI: https://doi.org/10.1093/sysbio/syy032
- Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38 (7), 3022–3027. https://doi.org/10.1093/molbev/msab120 DOI: https://doi.org/10.1093/molbev/msab120
- Trifinopoulos, J., Nguyen, L.T., von Haeseler, A. & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44 (W1), W232–W235. https://doi.org/10.1093/nar/gki352 DOI: https://doi.org/10.1093/nar/gkw256
- Zhang, J., Kapli, P., Pavlidis, P. and Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29 (22), 2869–2876. https://doi.org/10.1093/bioinformatics/btt499 DOI: https://doi.org/10.1093/bioinformatics/btt499
- Zugmayer, E. (1913) Die Fische von Baluchistan. Abhandlungen Königlichen Bayerischen Akademie der Wissenschaften, 26, 1–35.