Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-01-25
Page range: 236-257
Abstract views: 140
PDF downloaded: 9

A new neopasiphaeine bee associated with flowers of Loasaceae (Hymenoptera: Colletidae: Actenosigynes)

Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Av. Antônio Carlos; 6627 CEP 31270-010; Belo Horizonte; Minas Gerais; Brazil
Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Av. Antônio Carlos; 6627 CEP 31270-010; Belo Horizonte; Minas Gerais; Brazil
Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Av. Antônio Carlos; 6627 CEP 31270-010; Belo Horizonte; Minas Gerais; Brazil
Departamento de Biologia; FFCLRP; Universidade de São Paulo. Av. Bandeirantes; 3900. CEP 14040-901. Ribeirão Preto; SP; Brazil
Hymenoptera Apoidea biogeography Neopasiphaeinae Neotropical region oligolecty phylogenetic relationships

Abstract

The genus Actenosigynes includes two species, A. fulvoniger (Michener, 1989) and A. mantiqueirensis Silveira, 2009, both oligolectic on flowers of Blumenbachia (Loasaceae) in southern Brazil. We describe a third species, Actenosigynes silveirai Siriani-Oliveira, sp. n., and provide additional evidence to the suspected narrow host-plant specificity between bees of this genus and Loasaceae. This new species was only recorded to collect resources on flowers of Aosa, a genus closely related to Blumenbachia in the subfamily Loasoideae. We illustrate female and male specimens of the three species to offer a complete summary of the morphological variation within this modestly sized genus of Neopasiphaeinae, including photographs of male genitalia and associated metasomal sterna. Moreover, we provide an identification key for the three species of Actenosigynes and the first phylogenetic and dating estimate for these taxa. The genus diversified in southern South America during the Miocene-Pliocene, following a more ancient divergence associated with the orogenic events that separated its sister-genus, Torocolletes, west of the Andes. We dedicate this newly described species to Fernando A. Silveira for his contributions to research on Brazilian bee taxonomy and biology.

 

References

  1. Ackermann, M. & Weigend, M. (2006) Nectar, floral morphology and pollination syndrome in Loasaceae subfam. Loasoideae (Cornales). Annals of Botany, 98, 503–514. https://doi.org/10.1093/aob/mcl136
  2. Acuña Castillo, R., Luebert, F., Henning, T. & Weigend, M. (2019) Major lineages of Loasaceae subfam. Loasoideae diversified during the Andean uplift. Molecular Phylogenetics and Evolution, 141, 106616. https://doi.org/10.1016/j.ympev.2019.106616
  3. Almeida, E.A.B. (2008) Revised species checklist of the Paracolletinae (Hymenoptera, Colletidae) of the Australian Region, with the description of new taxa. Zootaxa, 1891 (1), 1–24. https://doi.org/10.11646/zootaxa.1891.1.1
  4. Almeida, E.A.B. & Danforth, B.N. (2009) Phylogeny of colletid bees (Hymenoptera: Colletidae) inferred from four nuclear genes. Molecular Phylogenetics and Evolution, 50, 290–309. https://doi.org/10.1016/j.ympev.2008.09.028
  5. Almeida, E.A.B. & Quinteiro, F.B. (2015) Two continents and two names for a Neotropical colletid bee species (Hymenoptera: Colletidae: Neopasiphaeinae): Hoplocolletes ventralis (Friese, 1924). PeerJ, 3, e1338. https://doi.org/10.7717/peerj.1338
  6. Almeida, E.A.B., Packer, L., Melo, G.A.R., Danforth, B.N., Cardinal, S.C., Quinteiro, F.B. & Pie, M.R. (2019) The diversification of neopasiphaeine bees during the Cenozoic (Hymenoptera: Colletidae). Zoologica Scripta, 48, 226–242. https://doi.org/10.1111/zsc.12333
  7. Almeida, E.A.B., Pie, M.R., Brady, S.G. & Danforth, B.N. (2012) Biogeography and diversification of colletid bees (Hymenoptera: Colletidae): emerging patterns from the southern end of the world. Journal of Biogeography, 39, 526–544. https://doi.org/10.1111/j.1365-2699.2011.02624.x
  8. Armijo, R., Lacassin, R., Coudurier-Curveur, A. & Carrizo, D. (2015) Coupled tectonic evolution of Andean orogeny and global climate. Earth-Science Reviews, 143, 1–35. https://doi.org/10.1016/j.earscirev.2015.01.005
  9. Blochtein, B. & Harter-Marques, B. (2003) Hymenoptera. In: Fontana, C.S., Bencke, G.A. & Reis, R.E. (Eds.), Livro Vermelho da Fauna Ameaçada de Extinção no Rio Grande do Sul. Porto Alegre, EDIPUCRS. pp. 95–109.
  10. Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M.A., Rambaut, A. & Drummond, A.J. (2014) BEAST 2: A Software Platform for Bayesian Evolutionary Analysis A. Prlic (Ed). PLoS Computational Biology, 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537
  11. Bouckaert, R.R. & Drummond, A.J. (2017) bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology, 17, 42. https://doi.org/10.1186/s12862-017-0890-6
  12. Brothers, D.J. (1976) Modifications of the metapostnotum and origin of the “propodeal triangle” in Hymenoptera Aculeata. Systematic Entomology, 1, 177–182. https://doi.org/10.1111/j.1365-3113.1976.tb00036.x
  13. Brown, D.K. & Kaul, R.B. (1981) Floral structure and mechanism in Loasaceae. American Journal of Botany, 68, 361–372. https://doi.org/10.2307/2442772
  14. Cane, H.J. (2021) A brief review of monolecty in bees and benefits of a broadened definition. Apidologie, 52, 17–22. https://doi.org/10.1007/s13592-020-00785-y
  15. Cane, J.H & Sipes, S. (2006) Characterizing floral specialization by bees: analytical methods and revised lexicon for oligolecty. In: Waser, N.M. & Ollerton, J. (Eds.), Plant-pollination interactions: from specialization to generalization. University of Chicago Press, Chicago, pp. 99–122.
  16. Carvalho, A.T. & Schlindwein, C. (2011) Obligate association of an oligolectic bee and a seasonal aquatic herb in semi-arid north-eastern Brazil. Biological Journal of the Linnean Society, 102, 355–368. https://doi.org/10.1111/j.1095-8312.2010.01587.x
  17. Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  18. Cerceau, I., Siriani-Oliveira, S., Dutra, A.L., Oliveira, R., Schlindwein, C., 2019. The cost of fidelity: foraging oligolectic bees gather huge amounts of pollen in a highly specialized cactus–pollinator association. Biological Journal of the Linnean Society, 128 (1), 30–43. https://doi.org/10.1093/biolinnean/blz083
  19. CNCFlora (2012) Aosa uleana in Lista Vermelha da Flora Brasileira. Centro Nacional de Conservação da Flora. Available from: http://cncflora.jbrj.gov.br/portal/pt-br/profile/Aosa%20uleana (accessed October 22, 2019)
  20. Danforth, B.N., Minckley, R.L. & Neff, J.L. (2019) The Solitary Bees. Biology, Evolution, Conservation. Princeton University Press, Princeton, xi + 472 pp. https://doi.org/10.1515/9780691189321
  21. da Silva, L.C., McNaughton, N.J., Armstrong, R., Hartmann, L.A. & Fletcher, I.R. (2005) The neoproterozoic Mantiqueira Province and its African connections: a zircon-based U–Pb geochronologic subdivision for the Brasiliano/Pan-African systems of orogens. Precambrian Research, 136, 203–240. https://doi.org/10.1016/j.precamres.2004.10.004
  22. Gimenes, M. (1991) Some morphological adaptations in bees (Hymenoptera, Apoidea) for collecting pollen from Ludwigia elegans (Onagraceae). Revista Brasileira de Entomologia, 35, 413–422.
  23. Gregory-Wodzicki, K.M. (2000) Uplift history of the Central and Northern Andes: A review. Geological Society of America Bulletin, 112, 1091–1105. https://doi.org/10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2
  24. Harris, R.A. (1979) A glossary of surface sculpturing. Occasional Papers in Entomology, State of California Department of Food and Agriculture, 28, 1–31. https://doi.org/10.5281/zenodo.26215
  25. Harter, B., Schlindwein, C. & Wittmann, D. (1995) Bienen und Kolibris als Bestäuber von Blüten der Gattung Cajophora (Loasaceae). Apidologie, 26, 356–357.
  26. Henning, T., Mittelbach, M., Ismail, S.A., Acuña-Castillo, R.H. & Weigend, M. (2018) A case of behavioural diversification in male floral function—The evolution of thigmonastic pollen presentation. Scientific Reports, 8, 1–15. https://doi.org/10.1038/s41598-018-32384-4
  27. Henning, T., Oliveira, S.S. de, Schlindwein, C. & Weigend, M. (2015) A new, narrowly endemic species of Blumenbachia (Loasaceae subfam. Loasoideae) from Brazil. Phytotaxa, 236 (2), 196–200. https://doi.org/10.11646/phytotaxa.236.2.9
  28. Henning, T. & Weigend, M. (2012) Total control—Pollen presentation and floral longevity in Loasaceae (blazing star family) are modulated by light, temperature and pollinator visitation rates. PLoS ONE, 7, e41121. https://doi.org/10.1371/journal.pone.0041121
  29. Hoorn, C., Wesselingh, F.P., ter Steege, H., Bermudez, M.A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T. & Antonelli, A. (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931. https://doi.org/10.1126/science.1194585
  30. Houston, T. (2018) A Guide to Native Bees of Australia by Terry Houston. CSIRO Publishing, Clayton South, 272 pp. https://doi.org/10.1071/9781486304073
  31. Houston, T.F. (1989) Leioproctus bees associated with western australian smoke bushes (Conospermum spp.) and their adaptations for foraging and concealment (Hymenoptera Colletidae Paracolletini). Records of the Western Australian Museum, 14, 275–292.
  32. Houston, T.F. (1990) Descriptions of new paracolletine bees associated with flowers of Eremophila (Hymenoptera: Colletidae). Records of the Western Australian Museum, 14, 583–621.
  33. Houston, T.F. (1991) Two new and unusual species of the bee genus Leioproctus Smith. (Hymenoptera: Colletidae), with notes on their behaviour. Records of the Western Australian Museum, 15, 83–96.
  34. Houston, T. (2018) A Guide to Native Bees of Australia. CSIRO Publishing, Clayton South, 272 pp.
  35. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096
  36. Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34 (3), 772–773. https://doi.org/10.1093/molbev/msw260
  37. Laroca, S., Michener, C.D. & Hofmeister, R.M. (1989) Long mouthparts among “short-tongued” bees and the fine structure of the labium in Niltonia (Hymenoptera, Colletidae). Journal of the Kansas Entomological Society, 62, 400–410.
  38. Leite, A.V., Nadia, T. & Machado, I.C. (2016) Pollination of Aosa rupestris (Hook.) Weigend (Loasaceae): are stamen movements induced by pollinators? Brazilian Journal of Botany, 39, 559–567. https://doi.org/10.1007/s40415-016-0258-y
  39. Lisiecki, L.E. & Raymo, M.E. (2007) Plio–Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quaternary Science Reviews, 26, 56–69. https://doi.org/10.1016/j.quascirev.2006.09.005
  40. Michener, C.D. (1989) Classification of American Colletinae (Hymenoptera, Apoidea). Science Bulletin, 53, 622–703.
  41. Michener, C.D. (2007) The Bees of the World. 2nd ed. John Hopkins University Press, Baltimore, xvi + 953 pp.
  42. Moure, J.S., Graf, V. & Urban, D. (1999) Catálogo de Apoidea da Região Neotropical (Hymenoptera, Colletidae). I. Paracolletini. Revista Brasileira de Zoologia, 16, 1–46. https://doi.org/10.1590/S0101-81751999000500001
  43. Moure, J.S., Urban, D. & Melo, G.A.R. (2007) Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region. Sociedade Brasileira de Entomologia, Curitiba, xiv + 1058 pp.
  44. Moure, J.S., Urban, D. & Melo, G.A.R. (2012) Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region - online version. Available from: http://www.moure.cria.org.br/catalogue (accessed 9 August 2023)
  45. Packer, L., Zayed, A., Grixti, J.C., Ruz, L., Owen, R.E., Vivallo, F. & Toro, H. (2005) Conservation genetics of potentially endangered mutualisms: Reduced levels of genetic variation in specialist versus generalist bees. Conservation Biology, 19, 195–202. https://doi.org/10.1111/j.1523-1739.2005.00601.x
  46. Pérez-Escobar, O.A., Zizka, A., Bermúdez, M.A., Meseguer, A.S., Condamine, F.L., Hoorn, C., Hooghiemstra, H., Pu, Y., Bogarín, D., Boschman, L.M., Pennington, R.T., Antonelli, A. & Chomicki, G. (2022) The Andes through time: Evolution and distribution of Andean floras. Trends in Plant Science, 27, 364–378. https://doi.org/10.1016/j.tplants.2021.09.010
  47. Porto, D.S., Vilhelmsen, L. & Almeida, E.A.B. (2016) Comparative morphology of the mandibles and head structures of corbiculate bees (Hymenoptera: Apidae: Apini). Systematic Entomology, 41, 339–368. https://doi.org/10.1111/syen.12156
  48. Poulsen, C.J., Ehlers, T.A. & Insel, N. (2010) Onset of convective rainfall during gradual late Miocene rise of the central Andes. Science, 328, 490–493. https://doi.org/10.1126/science.1185078
  49. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904. https://doi.org/10.1093/sysbio/syy032
  50. Robertson, C. (1925) Heterotropic Bees. Ecology, 6, 412–436. https://doi.org/10.2307/1929107
  51. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  52. Santos Júnior, J.E., Santos, F.R. & Silveira, F.A. (2015) Hitting an unintended target: Phylogeography of Bombus brasiliensis Lepeletier, 1836 and the first new Brazilian bumblebee species in a century (Hymenoptera: Apidae). PLOS ONE, 10, e0125847. https://doi.org/10.1371/journal.pone.0125847
  53. Schlindwein, C. (1998) Frequent oligolecty characterizing a diverse bee–plant community in a xerophytic bushland of subtropical Brazil. Studies on Neotropical Fauna and Environment, 33, 46–59. https://doi.org/10.1076/snfe.33.1.46.2168
  54. Schlindwein C. (2000) Verhaltensanpassungen oligolektischer Bienen an synchrone und an kontinuierliche Pollenpräsentation. In: Breckle, S.W, Schweizer, B. & Arndt, U. (Eds.), Ergebnisse weltweiter ökologischer Forschung. Verlag Günter Heimbach, Stuttgart, pp. 235–250.
  55. Schlindwein, C. & Wittmann, D. (1997a) Micro-foraging routes of Bicolletes pampeana (Colletidae) and bee-induced pollen presentation in Cajophora arechavaletae (Loasaceae). Botanica Acta, 110, 177–183. https://doi.org/10.1111/j.1438-8677.1997.tb00626.x
  56. Schlindwein, C, Wittmann, D. (1997b). Stamen movements in flowers of Opuntia (Cactaceae) favour oligolectic pollinators. Plant Systematics and Evolution, 204, 179–193. https://doi.org/10.1007/BF00989204
  57. Shorthouse, D.P. (2010) SimpleMappr, an online tool to produce publication-quality point maps. Available from: https://www.simplemappr.net (accessed 9 August 2023)
  58. Silveira, F.A. (2009) A synopsis of Actenosigynes Moure, Graf & Urban, 1999 (Hymenoptera: Colletidae)—new species, possible oligolecty and biogeographic comments. Zootaxa, 2292 (1), 15–24. https://doi.org/10.11646/zootaxa.2292.1.2
  59. Silveira, F.A. & Cure, J.R. (1993) High-Altitude bee fauna of southeastern Brazil: Implications for biogeographic patterns (Hymenoptera: Apoidea). Studies on Neotropical Fauna and Environment, 28, 47–55. https://doi.org/10.1080/01650529309360887
  60. Silveira, F.A., Melo, G.A.R. & Almeida, E.A.B. (2002) Abelhas Brasileiras: Sistemática e Identificação. 1st ed. Published by the authors, Belo Horizonte (Brasil), 253 pp.
  61. Siriani-Oliveira, S., Cerceau, I. & Schlindwein, C. (2020) Specialised protagonists in a plant-pollinator interaction: the pollination of Blumenbachia insignis (Loasaceae). Plant Biology, 22, 167–176. https://doi.org/10.1111/plb.13072
  62. Siriani-Oliveira, S., Oliveira, R. & Schlindwein, C. (2018) Pollination of Blumenbachia amana (Loasaceae): flower morphology and partitioned pollen presentation guarantee a private reward to a specialist pollinator. Biological Journal of the Linnean Society, 124, 479–491. https://doi.org/10.1093/biolinnean/bly061
  63. Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564–577. https://doi.org/10.1080/10635150701472164
  64. Urban, D. (1995) Espécies novas de Paracolletini e Panurginae do sul do Brasil e Argentina (Hymenoptera, Apoidea). Revista Brasileira de Zoologia, 12, 397–405. https://doi.org/10.1590/S0101-81751995000200016
  65. Urban, I. (1886) Die Bestäubungseinrichtungen der Loasaceen. Jahrbücher des Botanischen Gartens Berlin, 4, 364–388.
  66. Urban, I. (1892) Blüten- und Fruchtbau der Loasaceen. Berichte der Deutschen Botanischen Gesellschaft, 10, 259–265. https://doi.org/10.1111/j.1438-8677.1892.tb04450.x
  67. Vaidya, G., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27, 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  68. Veloso, H.P., Rangel-Filho, A.L.R. & Lima, J.C.A. (1991) Classificação da Vegetação Brasileira Adaptada a um Sistema Universal. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística (IBGE), 123 pp.
  69. Wcislo, W.T. & Cane, J.H. (1996) Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies. Annual Review of Entomology, 41, 257–286. https://doi.org/10.1146/annurev.en.41.010196.001353
  70. Weigend, M. (2006) Validating subfamily, genus and species names in Loasaceae (Cornales). Taxon, 55, 463–468. https://doi.org/10.2307/25065594
  71. Weigend, M. & Gottschling, M. (2006) Evolution of funnel-revolver flowers and ornithophily in Nasa (Loasaceae). Plant Biology, 8, 120–142. https://doi.org/10.1055/s-2005-873034
  72. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693. https://doi.org/10.1126/science.1059412
  73. Zayed, A., Packer, L., Grixti, J.C., Ruz, L., Owen, R.E. & Toro, H. (2005) Increased genetic differentiation in a specialist versus a generalist bee: Implications for conservation. Conservation Genetics, 6, 1017–1026. https://doi.org/10.1007/s10592-005-9094-5