Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-02-02
Page range: 1-36
Abstract views: 248
PDF downloaded: 157

Systematic assessment of the brown tree frog (Anura: Pelodryadidae: Litoria ewingii) reveals two endemic species in South Australia

Australian Museum Research Institute; Australian Museum; 1 William St; Sydney; NSW 2010; Australia
Australian Museum Research Institute; Australian Museum; 1 William St; Sydney; NSW 2010; Australia; Centre for Ecosystem Science; School of Biological; Earth and Environmental Sciences; University of New South Wales; Sydney; NSW 2052; Australia
Australian Museum Research Institute; Australian Museum; 1 William St; Sydney; NSW 2010; Australia; Centre for Ecosystem Science; School of Biological; Earth and Environmental Sciences; University of New South Wales; Sydney; NSW 2052; Australia
School of Biological Sciences; Monash University; Clayton; VIC 3168 Australia
Museums Victoria Research Institute; Melbourne Museum; GPO Box 666; Melbourne; VIC 3001; Australia
Museums Victoria Research Institute; Melbourne Museum; GPO Box 666; Melbourne; VIC 3001; Australia; School of Biological Sciences; Monash University; Clayton; VIC 3168 Australia
South Australian Museum; North Terrace; Adelaide; SA 5000; Australia
Amphibia mtDNA single-nucleotide polymorphisms biogeography Kangaroo Island Murray River Basin

Abstract

The brown tree frog (Litoria ewingii) is a relatively widespread, commonly encountered pelodryadid frog from south-eastern Australia, known for its characteristic whistling call. The distribution of Litoria ewingii spans over more than 350,000 km2, encompassing a range of moist temperate habitats, and is fragmented by well-known biogeographic barriers. A preliminary analysis of mitochondrial DNA sequences revealed evidence for deep phylogenetic structure between some of these fragmented populations. In this study, we sought to re-evaluate the systematics and taxonomy of Litoria ewingii sensu lato by analysing variation in nuclear and mitochondrial DNA, adult morphology and male advertisement calls throughout the species’ range. Our analyses reveal two additional, deeply divergent and allopatric lineages in South Australia. We herein re-describe Litoria ewingii from Tasmania, southern New South Wales, Victoria and south-eastern South Australia, resurrect the name Litoria calliscelis for a species occurring in the Mount Lofty Ranges and Fleurieu Peninsula in South Australia, and describe a new species, Litoria sibilus sp. nov., endemic to Kangaroo Island.

 

References

  1. Ahl, E. (1935) Beschreibung eines neuen Laubfrosches aus Südaustralien. Zoologischer Anzeiger, 109, 252–253.
  2. Ansari, M.H., Cooper, S.J., Schwarz, M.P., Ebrahimi, M., Dolman, G., Reinberger, L., Saint, K.M., Donnellan, S.C., Bull, M.C. & Gardner, M.G. (2019) Plio-Pleistocene diversification and biogeographic barriers in southern Australia reflected in the phylogeography of a widespread and common lizard species. Molecular Phylogenetics and Evolution, 133, 107–119. https://doi.org/10.1016/j.ympev.2018.12.014
  3. Anstis, M. (2017) n.k. In: Tadpoles and frogs of Australia. New Holland Publishers Pty Limited, Chatswood, pp. 202–205.
  4. Bazin, Y., Wharton, D.A. & Bishop, P.J. (2007) Cold tolerance and overwintering of an introduced New Zealand frog, the brown tree frog (Litoria ewingii). CryoLetters, 28, 347–358.
  5. Bonney, M.T., He, Y. & Myint, S.W. (2020) Contextualizing the 2019–2020 Kangaroo Island Bushfires: Quantifying landscape-level influences on past severity and recovery with Landsat and Google Earth Engine. Remote Sensing, 12, 3942. https://doi.org/10.3390/rs12233942
  6. Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M.A., Rambaut, A. & Drummond, A.J. (2014) BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537
  7. Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N.A. & Roy-Choudhury, A. (2012) Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Molecular Biology and Evolution, 29, 1917–1932. https://doi.org/10.1093/molbev/mss086
  8. Burbrink, F.T., Crother, B.I., Murray, C.M., Smith, B.T., Ruane, S., Myers, E.A. & Pyron, R.A. (2022) Empirical and philosophical problems with the subspecies rank. Ecology and Evolution, 12, e9069. https://doi.org/10.1002/ece3.9069
  9. Byrne, M., Yeates, D.K., Joseph, L., Kearney, M., Bowler, J., Williams, M.A.J., Cooper, S., Donnellan, S.C., Keogh, S., Leys, R., Melville, J., Murphy, D.J., Porch, N. & Wyrwoll, K.H. (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology, 17, 4398–417. https://doi.org/10.1111/j.1365-294x.2008.03899.x
  10. Chambers, E.A. & Hillis, D.M. (2020) The multispecies coalescent over-splits species in the case of geographically widespread taxa. Systematic Biology, 69, 184–193. https://doi.org/10.1093/sysbio/syz042
  11. Chapple, D.G., Chapple, S.N. & Thompson, M.B. (2011) Biogeographic barriers in south‐eastern Australia drive phylogeographic divergence in the garden skink, Lampropholis guichenoti. Journal of Biogeography, 38, 1761–1775. https://doi.org/10.1111/j.1365-2699.2011.02531.x
  12. Chifman, J. & Kubatko, L. (2014) Quartet inference from SNP data under the coalescent model. Bioinformatics, 30, 3317–3324. https://doi.org/10.1093/bioinformatics/btu530
  13. Chinathamby, K., Reina, R.D., Bailey, P.C. & Lees, B.K. (2006) Effects of salinity on the survival, growth and development of tadpoles of the brown tree frog, Litoria ewingii. Australian Journal of Zoology, 54, 97–105. https://doi.org/10.1071/ZO06006
  14. Coates, D. J., Byrne, M. & Moritz, C. (2018) Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics. Frontiers in Ecology and Evolution, 6, 165. https://doi.org/10.3389/fevo.2018.00165
  15. Cooper, S.J.B., Adams, M. & Labrinidis, A. (2000) Phylogeography of the Australian dunnart Sminthopsis crassicaudata (Marsupialia: Dasyuridae). Australian Journal of Zoology, 48, 461–473. https://doi.org/10.1071/zo00014
  16. Copland, S.J. (1957) Australian tree frogs of the genus Hyla. Proceedings of the Linnean Society of New South Wales, 82, 9–108.
  17. Cutajar, Timothy P., Portway, C.D., Gillard, G.L. & Rowley, J.J.L. (2022) Australian Frog Atlas: species’ distribution maps informed by the FrogID dataset. Technical Reports of the Australian Museum, 36, 1–48. [online] https://doi.org/10.3853/j.1835-4211.36.2022.1789
  18. Dennington, S.L. (1990) The Litoria ewingi complex (Anura: Hylidae) in south-eastern Australia. IX. Variation in mitochondrial DNA across a narrow zone of hybridisation between L. ewingi and L. paraewingi. Australian Journal of Zoology, 38, 53–63. https://doi.org/10.1071/zo9900053
  19. Dissanayake, D. S., Holleley, C. E., Sumner, J., Melville, J. & Georges, A. (2022) Lineage diversity within a widespread endemic Australian skink to better inform conservation in response to regional‐scale disturbance. Ecology and Evolution, 12, e8627. https://doi.org/10.1002/ece3.8627
  20. Donnellan, S.C., Adams, M., Hutchinson, M. & Baverstock, P.R. (1993). The identification of cryptic species in the Australian herpetofauna—a high research priority. In: Lunney, D. & Ayers, D. (Eds.), Herpetology in Australia: a diverse discipline. Transactions of the Royal Zoological Society of N.S.W. Special Edition. Surrey Beatty and Sons, Chipping Norton, pp. 121–26. https://doi.org/10.7882/rzsnsw.1993.018
  21. Dubey, S. & Shine, R. (2010) Evolutionary diversification of the lizard genus Bassiana (Scincidae) across southern Australia. PLoS One, 5, e12982. https://doi.org/10.1371/journal.pone.0012982
  22. Dufresnes, C., Brelsford, A., Jeffries, D.L., Mazepa, G., Suchan, T., Canestrelli, D., Nicieza, A., Fumagalli, L., Dubey, S., Martínez-Solano, I., Litvinchuk, S.N., Vences, M., Perrin, N. & Crochet, P,A. (2021) Mass of genes rather than master genes underlie the genomic architecture of amphibian speciation. Proceedings of the National Academy of Sciences U SA,118, e2103963118. https://doi.org/10.1073/pnas.2103963118
  23. Duméril, A.H.A. (1853) Mémoire sur les batraciens anoures, de la famille des hylaeformes ou rainettes, comprenent la description d’un genre nouveau et de onze espèces nouvelles. Annales des Sciences Naturelles. Zoologie et Biologie Animale. Paris, Serie 3, 19, 135–179. https://doi.org/10.5962/bhl.part.22065
  24. Duméril, A.M.C. & Bibron, G. (1841) Erpétologie Genérale ou Histoire Naturelle Complète des Reptiles. Vol. 8. Librarie Enclyclopedique de Roret, Paris, 784 pp. https://doi.org/10.5962/bhl.title.45973
  25. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. https://doi.org/10.1093/nar/gkh340.
  26. Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S. & Mitchell, S.E. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6, e19379. https://doi.org/10.1371/journal.pone.0019379
  27. Evanno, G., Regnaut, S. & Goudet, J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  28. Fletcher, J.J. (1898) Contributions to a more exact knowledge of the geographical distribution of Australian Batrachia. No. V. Proceedings of the Linnean Society of New South Wales, Series 2, 12, 660–684. https://doi.org/10.5962/bhl.part.12737
  29. Forti, L.R., Costa, W.P., Martins, L.B., Nunes-de-Almeida, C.H.L. & Toledo, L.F. (2016) Advertisement call and genetic structure conservatism: Good news for an endangered Neotropical frog. PeerJ, 4 (e2014), 1–16. https://doi.org/10.7717/peerj.2014
  30. Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & Francois, O. (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics, 196, 973–983. https://doi.org/10.1534/genetics.113.160572
  31. Gartside D.F. (1972) The Litoria ewingi complex (Anura: Hylidae) in south-eastern Australia III. Blood protein variation across a narrow hybrid zone between L. ewingi and L. paraewingi. Australian Journal of Zoology, 20, 435–443. https://doi.org/10.1071/zo9720435
  32. Georges, A., Gruber, B., Pauly, G.B., White, D., Adams, M., Young, M.J., Kilian, A., Zhang, X., Shaffer, H.B. & Unmack, P.J. (2018) Genome wide SNP markers breathe new life into phylogeography and species delimitation for the problematic short‐necked turtles (Chelidae: Emydura) of eastern Australia. Molecular Ecology, 27, 5195–5213. https://doi.org/10.1111/mec.14925
  33. Gruber, B., Unmack, P.J., Berry, O.F. & Georges, A. (2018) dartr: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Molecular Ecology Resources, 18, 691–699. https://doi.org/10.1111/1755-0998.12745
  34. Guibé, J. (1950) Catalogue des Types d’Amphibiens du Muséum National d’Histoire Naturelle. Imprimerie Nationale, Paris, 71 pp. [“1948”]
  35. Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology Evolution, 35, 518–522. https://doi.org/10.1093/molbev/msx281
  36. Huelsenbeck, J.P. & Ronquist, F. (2001) MR BAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
  37. Ingram, G.J., Corben, C.J. & Hosmer W. (1982) Litoria revelata: a new species of tree-frog from eastern Australia. Memoirs of the Queensland Museum, 20, 635–637.
  38. IUCN Standards and Petitions Committee. (2022) Guidelines for Using the IUCN Red List Categories and Criteria. Version 15.1. Prepared by the Standards and Petitions Committee. Available from: https://www.iucnredlist.org/resources/redlistguidelines (accessed 30 August 2022)
  39. Jombart, T., Devillard, S. & Balloux, F. (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11, 94. https://doi.org/10.1186/1471-2156-11-94
  40. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285
  41. Kass, R.E. & Raftery, A.E. (1995) Bayes factors. Journal of the American Statistical Association, 90, 773–795. https://doi.org/10.1080/01621459.1995.10476572
  42. Kawakami, T., Butlin, R.K., Adams, M., Saint, K.M., Paull, D.J. & Cooper, S.J. (2009) Re-examination of a proposed case of stasipatric speciation: phylogeography of the Australian morabine grasshoppers (Vandiemenella viatica species group). Molecular Ecology, 18, 3429–3442. https://doi.org/10.1111/j.1365-294x.2009.04277.x
  43. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S. & Duran, C. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  44. Kilian, A., Wenzl, P., Huttner, E., Carling, J., Xia, L., Blois, H., Caig, V., Heller-Uszynska, K., Jaccoud, D., Hopper, C., Aschenbrenner-Kilian, M., Evers, M., Peng, K., Cayla, C., Hok, P. & Uszynski, G. (2012) Diversity arrays technology: A generic genome profiling technology on open platforms. Methods in Molecular Biology, 888, 67–89. https://doi.org/10.1007/978-1-61779-870-2
  45. K. Lisa Yang Center for Conservation Bioacoustics (2022) Raven Pro: Interactive sound analysis software. Version 1.6.4. Computer software. The Cornell lab of Ornithology, Ithaca, NY. Available from: https://ravensoundsoftware.com/ (accessec 16 October 2023)
  46. Köhler, J., Jansen, M., Rodríguez, A., Kok, P.J.R., Toledo, L.F., Emmrich, M., Glaw, F., Haddad, C.F.B., Rödel, M-O. & Vences, M. (2017) The use of bioacoustics in anuran taxonomy: theory, terminology, methods and recommendations for best practice. Zootaxa, 4251 (1), 1–124. https://doi.org/10.11646/zootaxa.4251.1.1
  47. Kopelman, N.M., Mayzel, J., Jakobsson, M., Rosenberg, N.A. & Mayrose, I. (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387
  48. Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology Evolution, 33, 1870–4. https://doi.org/10.1093/molbev/msw054
  49. Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772–773. https://doi.org/10.1093/molbev/msw260
  50. Leaché, A. D., Fujita, M. K., Minin, V.N. & Bouckaert, R.R. (2014) Species delimitation using genome-wide SNP data. Systematic Biology, 63, 534–542. https://doi.org/10.1093/sysbio/syu018
  51. Leaché, A.D., Banbury, B.L., Felsenstein, J., de Oca, A.N. & Stamatakis A. (2015) Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Systematic Biology, 64, 1032–1047. https://doi.org/10.1093/sysbio/syv053
  52. Littlejohn, M.J. (1965) Premating isolation in the Hyla ewingi Complex (Anura: Hylidae). Evolution, 19, 234–243. https://doi.org/10.2307/2406376
  53. Littlejohn, M.J. (1976) The Litoria ewingi complex (Anura: Hylidae) in south-eastern Australia IV. Variation in mating-call structure across a narrow hybrid zone between L. ewingi and L. paraewingi. Australian Journal of Zoology, 24, 283–293. https://doi.org/10.1071/zo9760283
  54. Littlejohn, M.J. & Watson, G.F. (1983) The Litoria ewingi complex (Anura: Hylidae) in south-eastern Australia VII. Mating-call structure and genetic compatibility across a narrow hybrid zone between L. ewingi and L. paraewingi. Australian Journal of Zoology, 31, 193–204. https://doi.org/10.1071/zo9830193
  55. Lleonart, J., Salat, J. & Torres, G.J. (2000) Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology, 205, 85–93. https://doi.org/10.1006/jtbi.2000.2043
  56. Lötters S, Schmitz A, Reichle S, Rödder D, Quennet V (2009) Another case of cryptic diversity in poison frogs (Dendrobatidae: Ameerega)-description of a new species from Bolivia. Zootaxa, 2028, 20–30.
  57. Luedeling, E. (2019) chillR: statistical methods for phenology analysis in temperate fruit trees. R package version 0.70.21
  58. Mahony, M.J., Moses, B., Mahony, S., Lemckert, F. & Donnellan, S.C. (2020). A new species of frog in the Litoria ewingii species group (Anura: Pelodryadidae) from south-eastern Australia. Zootaxa, 4858 (2), 201–230. http://dx.doi.org/10.11646/zootaxa.4858.2.3
  59. Mitchell, B.A., Callaghan, C.T. & Rowley, J.J.L. (2020) Continental-scale citizen science data reveal no changes in acoustic responses of a widespread treefrog to an urbanisation gradient. Journal of Urban Ecology, 2020, 1–12. https://doi.org/10.1093/jue/juaa002
  60. Moore, J.A. (1961) The frogs of eastern New South Wales. Bulletin of the American Museum of Natural History, 12, 149–386. https://doi.org/10.2307/1441328
  61. Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300
  62. Peters, W.C.H. (1874) Über neue Amphibien (Gymnopis, Siphonops, Polypedates, Rhacophorus, Hyla, Clyclodus, Euprepes, Clemmys). Monatsberichte der Königlichen Preussische Akademie des Wissenschaften zu Berlin, 187, 616–624.
  63. Rambaut, A. & Drummond, A. (2007) Tracer. Version 1.4. MCMC trace analyses tool. Available from: http://tree.bio.ed.ac.uk/software/tracer/ (accessed 16 October 2023)
  64. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904. https://doi.org/10.1093/sysbio/syy032
  65. Renner, S.S. (2016) Return to Linnaeus’s focus on diagnosis, not description: the use of DNA characters in the formal naming of species. Systematic Biology, 65, 1085–1095. https://doi.org/10.1093/sysbio/syw032
  66. Rexer-Huber, K.M.J., Bishop, P.J. & Wharton, D.A. (2015) Field ecology of freezing: Linking microhabitat use with freezing tolerance in Litoria ewingii. Austral Ecology, 40, 933–940. https://doi.org/10.1093/sysbio/syw032
  67. Robinson, A.C. & Armstrong, D.M. (Eds.) (1999) A Biological Survey of Kangaroo Island, South Australia, 1989 & 1990. Heritage and Biodiversity Section, Department for Environment, Heritage and Aboriginal Affairs, South Australia. Available from: https://data.environment.sa.gov.au/Content/Publications/Kangaroo-Island-BioSurvey.pdf (accessed 16 October 2023)
  68. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MRBAYE S 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  69. Rosauer, D., Laffan, S.W., Crisp, M.D., Donnellan, S.C. & Cook, L.G. (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Molecular Ecology, 18, 4061–72. https://doi.org/10.1111/j.1365-294X.2009.04311.x
  70. Rowley, J., Mahony, M.J., Hines, H.B., Myers S., Aplin, K.P., Price, L. & Donnellan, S.C. (2021) Two new species from the Litoria rubella species group from eastern Australia. Zootaxa, 5071 (1), 1–41. https://doi.org/10.11646/zootaxa.5071.1.1
  71. Rowley, J.J.L., Callaghan, C.T., Cutajar, T., Portway, C., Potter K., Mahony, S, Trembath, D.F., Flemons, P. & Woods, A. (2019) FrogID: Citizen scientists provide validated biodiversity data on frogs of Australia. Herpetological Conservation and Biology, 14, 155–170. https://doi.org/10.3897/zookeys.912.38253
  72. Sanders, M.G. (2021) Photographic Field Guide to Australian Frogs. CSIRO publishing, Clayton South, Victoria. https://doi.org/10.1071/9781486313266
  73. Smith, K.L., Hale, J.M., Gay, L., Kearney, M., Austin, J.J., Parris, K.M. & Melville, J. (2013a) Spatio‐temporal changes in the structure of an Australian frog hybrid zone: a 40‐year perspective. Evolution, 67, 3442–3454. https://doi.org/10.1111/evo.12140
  74. Smith, K.L., Hale, J.M., Kearney, M.R., Austin, J.J. & Melville, J. (2013b) Molecular patterns of introgression in a classic hybrid zone between the Australian tree frogs, Litoria ewingii and L. paraewingi: evidence of a tension zone. Molecular Ecology, 22, 1869–1883. https://doi.org/10.1111/mec.12176
  75. Smith, K.L., Oliver, P.M. & Littlejohn, M.J. (2012) Morphological and acoustic evidence for hybridisation between two broadly sympatric south-eastern Australian tree frogs Litoria ewingii and L. verreauxii (Anura: Hylidae). Australian Journal of Zoology, 60, 37–45. https://doi.org/10.1071/zo12020
  76. Sparks, A.H., Carroll, J., Goldie, J., Marchiori, D., Melloy, P., Padgham, M., Parsonage, H. & Pembleton, K. (2020) bomrang: Australian Government Bureau of Meteorology (BOM) Data Client. R Package Version 0.7.1. Available from: https://CRAN.R-project.org/package=bomrang (accessed 16 October 2023)
  77. Sparks, A.H., Padgham, M., Parsonage, H. & Pembleton, K. (2017) bomrang: Fetch Australian Government Bureau of Meteorology Weather Data. The Journal of Open Source Software, 2 (17), 411. https://doi.org/10.21105/joss.00411
  78. Swofford, D.L. (2003) PAUP*: phylogenetic analysis using parsimony, version 4.0 b10.
  79. Symula, R., Keogh, J.S. & Cannatella, D.C. (2008) Ancient phylogeographic divergence in southeastern Australia among populations of the widespread common froglet, Crinia signifera. Molecular Phylogenetics and Evolution, 47, 569–580. https://doi.org/10.1016/j.ympev.2008.01.011
  80. Trifinopoulos, J., Nguyen, L.T., von Haeseler, A. & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44 (W1), W232–W235. https://doi.org/10.1093/nar/gkw256
  81. Tyler, M.J. & Davies, M.M. (1978) Species-groups within the Australopapuan hylid frog genus Litoria Tschudi. Australian Journal of Zoology, Supplemental Series 27, 1–47. https://doi.org/10.1071/AJZS063
  82. Watson, G.F. & Littlejohn, M.J. (1978) The Litoria ewingi complex (Anura: Hylidae) in south-eastern Australia V. Interactions between Northern L. ewingi and adjacent taxa. Australian Journal of Zoology, 26, 175–195. https://doi.org/10.1071/zo9780175
  83. Watson, G.F. (1972) The Litoria ewingi complex (Anura: Hylidae) in south-eastern Australia. II. Genetic incompatibility and delimitation of a narrow hybrid zone between L. ewingi and L. paraewingi. Australian Journal of Zoology, 20, 423–433. https://doi.org/10.1071/zo9720423
  84. Watson, G.F., Littlejohn M.J., Gartside D.F. & Loftus-Hills J.J. (1985) The Litoria ewingi complex (Anura: Hylidae) in south-eastern Australia VIII. Hybridization between L. ewingi and L. verreauxi alpina in the Mount Baw Baw area, south central Victoria. Australian Journal of Zoology, 33, 143–152. https://doi.org/10.1071/zo9850143
  85. Watson, G.F., Loftus-Hills, J.J. & Littlejohn, M.J. (1971) The Litoria ewingii complex (Anura: Hylidae) in south-eastern Australia I. A new species from Victoria. Australian Journal of Zoology, 19, 401–416. https://doi.org/10.1071/zo9710401
  86. White, A.M., Whitford, R.W. & Mahony, M.J. (1994) A new species of Litoria (Anura: Hylidae) from eastern Australia. Proceedings of the Linnean Society of New South Wales, 114, 3–10.