Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-03-06
Page range: 217-244
Abstract views: 70
PDF downloaded: 6

Notes on Chisosa (Araneae, Pholcidae), with the description of a new species from Mexico

Zoological Research Museum Alexander Koenig; LIB; Bonn; Germany
Zoological Research Museum Alexander Koenig; LIB; Bonn; Germany
Colección de Aracnología (CARCIB); Centro de Investigaciones Biológicas del Noroeste CIBNOR; S.C.; La Paz; Baja California Sur; México
Araneae Arteminae Caribbean CO1 barcoding North America Physocyclus Serratochorus

Abstract

The genus Chisosa Huber, 2000 previously included only three species of small to tiny North American and Caribbean spiders that are rare in collections and poorly studied. Originally placed in the subfamily Ninetinae, Chisosa is currently considered a representative of Arteminae, close to the North American genus Physocyclus Simon, 1893. This placement has been suggested by molecular data, and it affects the interpretation of morphological characters that were originally thought to support the monophyly of Chisosa: they are shared with Physocyclus and thus plesiomorphic for Chisosa. Here we describe a new species from Mexico, C. calapa sp. nov., and restudy in detail the morphology (incl. ultrastructure) of the type species C. diluta (Gertsch & Mulaik, 1940) and of C. caquetio Huber, 2019, based on newly collected material. We document further similarities with Physocyclus but find only weak morphological support for the monophyly of Chisosa (body size reduction and short legs). In addition, we document surprisingly large genetic distances among C. caquetio specimens from Curaçao (>14% CO1 K2P distances), possibly indicating species limits. Finally, we propose that the Dominican amber genus Serratochorus Wunderlich, 1988, based on a single male specimen, is also phylogenetically close to Chisosa and should be included in future studies on these enigmatic spiders.

 

References

  1. Astrin, J.J., Huber, B.A., Misof, B. & Kluetsch, C.F.C. (2006) Molecular taxonomy in pholcid spiders (Pholcidae, Araneae): evaluations of species identification methods using CO1 and 16S rRNA. Zoologica Scripta, 35, 441–457. https://doi.org/10.1111/j.1463-6409.2006.00239.x
  2. Astrin, J.J., Höfer, H., Spelda, J., Holstein, J., Bayer, S., Hendrich, L., Huber, B.A., Kielhorn, K.-H., Krammer, H.-J., Lemke, M., Monje, J.C., Morinière, J., Rulik, B., Petersen, M., Janssen, H. & Muster, C. (2016) Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS One, 11, e0162624. https://doi.org/10.1371/journal.pone.0162624
  3. Ávila Herrera, I.M., Král, J., Pastuchová, M., Forman, M., Musilová, J., Kořínková, T., Šťáhlavský, F., Zrzavá, M., Nguyen, P., Just, P., Haddad, C.R., Hiřman, M., Koubová, M., Sadíle, D. & Huber, B.A. (2021) Evolutionary pattern of karyotypes and meiosis in pholcid spiders (Araneae: Pholcidae): implications for reconstructing chromosome evolution of araneomorph spiders. BMC Ecology and Evolution, 21, 75. https://doi.org/10.1186/s12862-021-01750-8
  4. Brown, B.V. (1993) A further chemical alternative to critical-point-drying for preparing small (or large) flies. Fly Times, 11, 10.
  5. Cock, P.J., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B. & de Hoon, M.J. (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 25, 1422–1423. https://doi.org/10.1093/bioinformatics/btp163
  6. Eberle, J., Dimitrov, D., Valdez-Mondragón, A. & Huber, B.A. (2018) Microhabitat change drives diversification in pholcid spiders. BMC Evolutionary Biology, 18, 141. https://doi.org/10.1186/s12862-018-1244-8
  7. Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791. https://doi.org/10.2307/2408678
  8. Gertsch, W.J. (1982) The spider genera Pholcophora and Anopsicus (Araneae, Pholcidae) in North America, Central America and the West Indies. Texas Memorial Museum, Bulletin, 28, 95–144.
  9. Gertsch, W.J. & Mulaik, S. (1940) The spiders of Texas, I. Bulletin of the American Museum of Natural History, 77, 307–340.
  10. Huber, B.A. (2000) New World pholcid spiders (Araneae: Pholcidae): a revision at generic level. Bulletin of the American Museum of Natural History, 254, 1–348. https://doi.org/10.1206/0003-0090(2000)254<0001:NWPSAP>2.0.CO;2
  11. Huber, B.A. & Carvalho, L.S. (2019) Filling the gaps: descriptions of unnamed species included in the latest molecular phylogeny of Pholcidae (Araneae). Zootaxa, 4546 (1), 1–96. https://doi.org/10.11646/zootaxa.4546.1.1
  12. Huber, B.A. & Villarreal, O. (2020) On Venezuelan pholcid spiders (Araneae, Pholcidae). European Journal of Taxonomy, 718, 1–317. https://doi.org/10.5852/ejt.2020.718.1101
  13. Huber, B.A., Eberle, J. & Dimitrov, D. (2018) The phylogeny of pholcid spiders: a critical evaluation of relationships suggested by molecular data (Araneae, Pholcidae). ZooKeys, 789, 51–101. https://doi.org/10.3897/zookeys.789.22781
  14. Huber, B.A., Meng, G., Král, J., Ávila Herrera, I.M. & Izquierdo, M.A. (2023a) Revision of the South American Ninetinae genus Guaranita (Araneae, Pholcidae). European Journal of Taxonomy, 900, 32–80. https://doi.org/10.5852/ejt.2023.900.2301
  15. Huber, B.A., Meng, G., Dupérré, N., Astrin, J., Herrera, M. (2023b) Andean giants: Priscula spiders from Ecuador, with notes on species groups and egg-sac troglomorphism (Araneae: Pholcidae). European Journal of Taxonomy, 909, 1–63. https://doi.org/10.5852/ejt.2023.909.2351
  16. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
  17. Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/bf01731581
  18. Letunic, I. & Bork, P. (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49, W293–W296. https://doi.org/10.1093/nar/gkab301
  19. Nolasco, S. & Valdez-Mondragón, A. (2022) To be or not to be... Integrative taxonomy and species delimitation in the daddy long-legs spiders of the genus Physocyclus (Araneae, Pholcidae) using DNA barcoding and morphology. ZooKeys, 1135, 93–118. https://doi.org/10.3897/zookeys.1135.94628
  20. Ratnasingham, S. & Hebert, P.D.N. (2007) bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
  21. Saitou, N. & Nei, M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  22. Suyama, M., Torrents, D. & Bork, P. (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 34, W609–W612. https://doi.org/10.1093/nar/gkl315
  23. Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38, 3022–3027. https://doi.org/10.1093/molbev/msab120
  24. Valdez-Mondragón, A. (2013) Morphological phylogenetic analysis of the spider genus Physocyclus (Araneae: Pholcidae). Journal of Arachnology, 41, 184–196. https://doi.org/10.1636/K12-33.1
  25. Valdez-Mondragón, A. (2020) COI mtDNA barcoding and morphology for species delimitation in the spider genus Ixchela Huber (Araneae: Pholcidae), with description of two new species from Mexico. Zootaxa, 4747 (1), 54–76. https://doi.org/10.11646/zootaxa.4747.1.2
  26. Wunderlich, J. (1988) Die fossilen Spinnen im Dominikanischen Bernstein. Beiträge zur Araneologie, 2, 1–378.
  27. Yang, C., Zheng, Y., Tan, S., Meng, G., Rao, W., Yang, C., Bourne, D.G., O’Brian, P.A., Xu, J., Liao, S., Chen, A., Chen, X., Jia, X., Zhang, A.B. & Liu, S. (2020) Efficient COI barcoding using high throughput single-end 400bp sequencing. BMC Genomics, 21, 862. https://doi.org/10.1186/s12864-020-07255-w