Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-04-04
Page range: 96-106
Abstract views: 10
PDF downloaded: 0

Effectiveness of multigene analysis for associating dimorphic partners in flat wasps (Hymenoptera, Bethylidae, Dissomphalus)

Departamento de Ciências Biológicas; Universidade Federal do Espírito Santo; Av. Fernando Ferrari 514; Goiabeiras; 29.075-910; Vitória ES; Brazil
Departamento de Ciências Biológicas; Universidade Federal do Espírito Santo; Av. Fernando Ferrari 514; Goiabeiras; 29.075-910; Vitória ES; Brazil
Departamento de Ciências Biológicas; Universidade Federal do Espírito Santo; Av. Fernando Ferrari 514; Goiabeiras; 29.075-910; Vitória ES; Brazil
Departamento de Ciências Biológicas; Universidade Federal do Espírito Santo; Av. Fernando Ferrari 514; Goiabeiras; 29.075-910; Vitória ES; Brazil
Departamento de Ciências Biológicas; Universidade Federal do Espírito Santo; Av. Fernando Ferrari 514; Goiabeiras; 29.075-910; Vitória ES; Brazil
Hymenoptera Chrysidoidea dNa barcoding Pristocerinae sexual dimorphism

Abstract

DNA sequences have proved valuable for associating males and females of the same dimorphic species in Hymenoptera. These molecular associations, however, depend on the used DNA sequences and the analysis methods. In the present study, we evaluated the molecular associations on 23 species of Dissomphalus (Hymenoptera, Bethylidae) using the three most common DNA sequences in molecular studies of Hymenoptera (28S rRNA, COI and ITS2). Our results indicated the male-female association with these three markers. COI, however, showed to be more suitable than the other markers because there was no overlap of genetic variation among species. In contrast, the 28S rRNA showed overlapping of genetic distance limits, indicating that the distance matrix is not enough to assign a sexual conspecificity. We were able to perform female association to the described species D. verus Mugrabi & Azevedo, demonstrating that phylogenetic analysis is a valuable tool for associating the sexes of dimorphic species.

References

  1. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402. https://doi.org/10.1093/nar/25.17.3389
  2. Ashmead, W.H. (1893) A monograph of the North American Proctotrypidae. Bulletin of the United States National Museum, 45, 1–472. https://doi.org/10.5479/si.03629236.45.1
  3. Azevedo, C.O. (1999) Revision of the Neotropical Dissomphalus Ashmead, 1893 (Hymenoptera, Bethylidae) with median tergal process. Arquivos de Zoologia, 35, 301–394. https://doi.org/10.11606/issn.2176-7793.v35i4p301-394
  4. Azevedo, C.O. (2000) The dumosus group of Dissomphalus (Hymenoptera, Bethylidae): definition and description of a new Amazonian species. Boletim do Museu Paraense Emílio Goeldi, 16, 91–97.
  5. Azevedo, C.O. (2001) Systematics of the Neotropical Dissomphalus Ashmead (Hymenoptera, Bethylidae) of the bicavatus group. Revista Brasileira de Entomologia, 45, 173–205.
  6. Azevedo, C.O. (2003) Synopsis of the Neotropical Dissomphalus (Hymenoptera, Bethylidae). Zootaxa, 338 (1), 1–74. https://doi.org/10.11646/zootaxa.338.1.1
  7. Azevedo, C.O., Alencar, I.D.C.C. & Colombo, W.D. (2018) Pairs in copulation of the highly dimorphic genus Pristocera Klug (Hymenoptera, Bethylidae) from Madagascar solve taxonomic problems of male-female associations. Zootaxa, 4433 (1), 1–49. https://doi.org/10.11646/zootaxa.4433.1.1
  8. Azevedo, C.O., Colombo, W.D., Alencar, I.D.C.C., Brito, C.D. de & Waichert, C. (2016) Couples in phoretic copulation, a tool for male-female association in highly dimorphic insects of the wasp genus Dissomphalus Ashmead (Hymenoptera: Bethylidae). Zoologia, 33 (6), e20160076. https://doi.org/10.1590/S1984-4689zool-20160076
  9. Carr, M., Young, J.P.W. & Mayhew, P.J. (2010) Phylogeny of bethylid wasps (Hymenoptera: Bethylidae) inferred from 28S and 16S rRNA genes. Insect Systematics and Evolution, 41, 55–73. https://doi.org/10.1163/187631210X486995
  10. De La Rúa, P., May-Itzá, W., Serrano, J. & Quezada-Euán, J.J.G. (2007) Sequence and RFLP analysis of the ITS2 ribosomal in two Neotropical social bees, Melipona beecheii and Melipona yucatanica (Apidae, Meliponini). Insectes Sociaux, 54, 418–423. https://doi.org/10.1007/s00040-007-0962-5
  11. Evans, H.E. (1955 [1954]) The North American species of Dissomphalus (Hymenoptera, Bethylidae). Proceedings of the Entomological Society of Washington, 56, 288–309.
  12. Evans, H.E. (1969) The genera Apenesia and Dissomphalus in Argentina and Chile (Hymenoptera, Bethylidae). Breviora, 311, 1–23.
  13. Folmer, O., Black, M., Wr, H., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–249.
  14. Girault, A.A. (1911) Descriptions of nine new genera of the Chalcidoid family Trichogrammatidae. Transactions of the American Entomological Society of Philadelphia, 37, 1–42.
  15. Harris, R.A. (1979) A glossary of surface sculpturing. Occasional Papers in Entomology, 28, 1–31. https://doi.org/10.5281/zenodo.26215
  16. Hebert, P.D.N., Cywinska, A., Ball, S.L. & Waard, J. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B, 270, 313–321. https://doi.org/10.1098/rspb.2002.2218
  17. Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
  18. Katoh, S. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
  19. Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/BF01731581
  20. Kumar, A.G., Jalali, S., Venkatesan, T., Stouthamer, R., Niranjana, P. & Lalitha, Y. (2009) Internal transcribed spacer-2 restriction fragment length polymorphism (ITS-2- RFLP) tool to differentiate some exotic and indigenous trichogrammatid egg parasitoids in India. Biological Control, 49, 207–213. https://doi.org/10.1016/j.biocontrol.2009.02.010
  21. Lanes, G.O. & Azevedo, C.O. (2007) Redescription and placement of the Oriental Scaphepyris rufus Kieffer (Hymenoptera: Bethylidae). Zootaxa, 1654 (1), 55–60. https://doi.org/10.11646/zootaxa.1654.1.4
  22. Lanes, G.O., Kawada, R., Azevedo, C.O. & Brothers, D. (2020) Revisited morphology applied for Systematic of flat wasps (Hymenoptera, Bethylidae). Zootaxa, 4752 (1), 1–127. https://doi.org/10.11646/zootaxa.4752.1.1
  23. Mugrabi, D.F. & Azevedo, C.O. (2013) Revision of Thai Dissomphalus Ashmead, 1893 (Hymenoptera, Bethylidae), with description of twenty-four new species. Zootaxa, 3662 (1), 1–73. https://doi.org/10.11646/zootaxa.3662.1.1
  24. Oh, H.K., Yoon, H.J., Kim, M.J., Jeong, H.U., Kim, S.R., Hwang, J.S., Bae, C.H. & Kim, I. (2009) ITS2 ribosomal DNA sequence variation of the bumblebee, Bombus ardens (Hymenoptera: Apidae). Genes Genomics, 31, 293–303. https://doi.org/10.1007/BF03191202
  25. Pilgrim, E.M. & Pitts, J.P. (2006) A Molecular Method for Associating the Dimorphic Sexes of Velvet Ants (Hymenoptera: Mutillidae). Journal of the Kansas Entomological Society, 79, 222–230. https://doi.org/10.2317/0511.09.1
  26. Posada, D. (2008) jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25, 1253–1256. https://doi.org/10.1093/molbev/msn083
  27. Schwarz, G. (1978) Estimating the Dimension of a Model. Annals of Statistics, 6, 461–464. https://doi.org/10.1214/aos/1176344136
  28. Stubblefield, J.W. & Seger, J. (1994) Sexual dimorphism in the Hymenoptera. In: Short, R.V. & Balaban, E. (Eds.), The differences between the sexes. Cambridge University Press, Cambridge, pp. 71–103.
  29. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739. https://doi.org/10.1093/molbev/msr121
  30. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725–9. https://doi.org/10.1093/molbev/mst197
  31. Terayama, M. (2001) Descriptions of seven new species of the genus Dissomphalus Ashmead (Hymenoptera, Bethylidae) from the Oriental region. Japanese Journal of Systematic Entomology, 7, 81–90.
  32. Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673
  33. Vargas, J.M. (2008) First record of phoretic copulation in Dissomphalus xanthopus Ashmead (Hymenoptera: Bethylidae). Entomological News, 118, 470–474. https://doi.org/10.3157/0013-872X(2007)118[470:FROPCI]2.0.CO;2
  34. Vivallo, F. (2020) Phoretic copulation in Aculeata (Insecta: Hymenoptera): a review. Zoological Journal of the Linnean Society, 191, 626–636. https://doi.org/10.1093/zoolinnean/zlaa069
  35. Vobis, M., D’haese, J., Mehlhorn, H., Mencke, N., Blagburn, B.L., Bond, R., Denholm, I., Dryden, M.W., Payne, P., Rust, M.K., Schroeder, I., Vaughn, M.B. & Bledsoe, D. (2004) Molecular phylogeny of isolates of Ctenocephalides felis and related species based on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding primers. Parasitology Research, 94, 219–226. https://doi.org/10.1007/s00436-004-1201-x
  36. Weekers, H.H., De Jonckheere, J.F. & Dumont, H.J. (2001) Phylogenetic relationships inferred from ribosomal ITS sequences and biogeographic patterns in representatives of the genus Calopteryx (Insecta: Odonata) of the West Mediterranean and adjacent West European zone. Molecular Phylogenetics and Evolution, 20, 89–99. https://doi.org/10.1006/mpev.2001.0947
  37. Westwood, J.O. (1833) Descriptions of several new British forms amongst the parasitic hymenopterous insects. London & Edinburgh Philosophical Magazine and Journal of Science, 2, 443–445. https://doi.org/10.1080/14786443308648084
  38. Westwood, J.O., Hope, F.W. & Pettigrew, T.J. (1874) Thesaurus Entomologicus Oxoniensis, or, illustrations of new, rare, and interesting insects, for the most part contained in the collections presented to the University of Oxford by the Rev. F.W. Hope. Clarendon Press, Oxford, 202 pp. https://doi.org/10.5962/bhl.title.14077
  39. Wilson, J.S. & Pitts, P.P. (2010) Phylogeographic analysis of the nocturnal velvet ant genus Dilophotopsis (Hymenoptera: Mutillidae) provides insights into diversification in the Nearctic deserts. Biological Journal of the Linnean Society, 101, 360–375. https://doi.org/10.1111/j.1095-8312.2010.01526.x
  40. Xia, X. & Xie, Z. (2001) DAMBE: Data analysis in molecular biology and evolution. Journal of Heredity, 92, 371–373. https://doi.org/10.1093/jhered/92.4.371
  41. Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. (2003) An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 26, 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3