Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-04-12
Page range: 193-222
Abstract views: 137
PDF downloaded: 3

A new species of the Cyrtodactylus brevipalmatus group (Squamata: Gekkonidae) from Phuket Island, Thailand with a discussion of the group’s potential biogeography

Herpetology Laboratory; Department of Biology; La Sierra University; 4500 Riverwalk Parkway; Riverside; California 92505; USA. Department of Herpetology; San Diego Natural History Museum; PO Box 121390; San Diego; California; 92112; USA. Institute for Tropical Biology and Conservation; Universiti Malaysia Sabah; Kota Kinabalu; Malaysia.
Division of Fishery; School of Agriculture and Natural Resources; University of Phayao; Phayao; Thailand.
Joint Vietnam - Russia Tropical Science and Technology Research Centre; 63 Nguyen Van Huyen Road; Nghia Do; Cau Giay; Hanoi; Vietnam
Department of Vertebrate Zoology; Lomonosov Moscow State University; Leninskiye Gory; GSP–1; Moscow 119991; Russia.
Zoological Museum; Moscow State University; Moscow; 2 Bolshaya Nikitskaya St.; Moscow 125009; Russia
Division of Fishery; School of Agriculture and Natural Resources; University of Phayao; Phayao; Thailand
Joint Vietnam - Russia Tropical Science and Technology Research Centre; 63 Nguyen Van Huyen Road; Nghia Do; Cau Giay; Hanoi; Vietnam. Department of Vertebrate Zoology; Lomonosov Moscow State University; Leninskiye Gory; GSP–1; Moscow 119991; Russia. Zoological Museum; Moscow State University; Moscow; 2 Bolshaya Nikitskaya St.; Moscow 125009; Russia
Reptilia Indochina phylogeny integrative taxonomy gecko ND2 BioGeoBEArS

Abstract

Model based integrative analyses supports the recognition of a new species of the Cyrtodactylus brevipalmatus group from Phuket Island, Thailand. Cyrtodactylus thalang sp. nov. is most closely related to the sister species C. brevipalmatus from the Thai-Malay Peninsula and C. cf. brevipalmatus from Langkawi Island, Kedah State, Peninsular Malaysia. Based on the mitochondrial gene ND2, C. thalang sp. nov. bears an uncorrected pairwise sequence divergence of 14.7% and 15.1% from C. cf. brevipalmatus and C. brevipalmatus, respectively, significantly different (p<0.05) mean values of meristic and morphometric characters, and discrete categorical morphological differences. A multiple factor analysis morphospatially statistically placed C. thalang sp. nov. well outside all other species of the brevipalmatus group. The BAYAREALIKE model of a BioGeoBEARS analysis indicated the origin of the brevipalmatus group was in western Indochina with subsequent south to north speciation along the Tenasserim Mountains followed by a west to east invasion of northern Thailand, Laos, and northwestern Vietnam northeast of the Chao Phraya Basin and north of the Khorat Plateau.

References

  1. Barraclough, T.G., Birky Jr., C.W. & Burt, A. (2003) Diversification in sexual and asexual organisms. Evolution, 57, 2166–2172. https://doi.org/10.1554/02–339
  2. Bernstein, J.M., de Souza, H.F., Murphy, J.C., Voris, H.K., Brown, R.M., Myers, E.A., Harrington, S., Shanker, K. & Ruane, S. (2023) Phylogenomics of Fresh and Formalin Specimens Resolves the Systematics of Old World Mud Snakes (Serpentes: Homalopsidae) and Expands Biogeographic Inference. Bulletin of the Society of Systematic Biology, 2 (1), 1–24. https://doi.org/10.18061/bssb.v2i1.9393
  3. Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M., Mendes, F.K., Müller, N.F., Ogilvie, H.A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M.A., Wu, C.H., Xie, D., Zhang, C., Stadler, T. & Drummond, A.J. (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS computational biology, 15 (4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650
  4. Chan, K.O. & Grismer, L.L. (2022) GroupStruct: An R package for allometric size correction. Zootaxa, 5124, 471–482. https://doi.org/10.11646/zootaxa.5124.4.4
  5. Chomdej, S., Suwannapoom, C., Pradit, W., Phupanbai, A. & Grismer, L.L. (2023) A new species of the Cyrtodactylus brevipalmatus group (Squamata: Gekkonidae) from Tak Province, northwestern Thailand. Vertebrate Zoology, 1164, 63–88. https://doi.org/10.3897/zookeys.1164.101263
  6. Choowong, M. (2011) Quaternary. In: Ridd, M.F., Barber, A.J. & Crow, M.J. (Eds.), The Geology of Thailand. The Geological Society of London, London, pp. 335–350. https://doi.org/10.1144/GOTH.12
  7. Choowong, M., Ugai, H., Charoentitirat, T., Charusiri, P., Daorerk, V., Songmuang, R. & Ladachart, R. (2004) Holocene biostratigraphical records in coastal depositis from Sam Roi Yod National Park, Prachuap Khiri Khan, western Thailand. Journal of Chulalongkorn University, 4, 1–18.
  8. de Bruyn, M., Nugroho, E., Hossain, Md.M., Wilson, J.C. & Mather, P.B. (2004) Phylogeographic evidence for the existence of an ancient biogeographic barrier: the Isthmus of Kra Seaway. Heredity, 94, 370–378. https://doi.org/10.1038/sj.hdy.6800613
  9. de Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology, 56, 879–886. https://doi.org/10.1080/10635150701701083
  10. Frost, D.R. & Hillis, D.M. (1990) Species in concept and practice: herpeto­logical application. Herpetologica, 46, 87–104.
  11. Frost, D.R. & Kluge, A.G. (1994) A consideration of the epistemology in systematic biology, with special reference to species. Cladistics, 10, 259–294. https://doi.org/10.1111/j.1096-0031.1994.tb00178.x
  12. Fuchs, J., Ericson, P.G.P. & Pasquet, E. (2008) Mitochondrial phylogeographic structure of the white-browed piculet (Sasia ochracea): cryptic genetic differentiation and endemism in Indochina. Journal of Biogeography, 35, 565–575. https://doi.org/10.1111/j.1365-2699.2007.01811.x
  13. Grismer, L.L. (2008) On the distribution and identification of Cyrtodactylus brevipalmatus Smith, 1923 and Cyrtodactylus elok Dring, 1979. The Raffles Bulletin of Zoology, 56, 177–179.
  14. Grismer, L.L. (2011) Lizards of Peninsular Malaysia, Singapore and Their Adjacent Archipelagos. Edition Chimaira, Frankfürt am Main, 728 pp.
  15. Grismer, L.L., Aowphol, A., Yodthong, S., Ampai, N., Termprayoon, K., Aksornneam, A. & Rujirawan, A. (2022b) Integrative taxonomy delimits and diagnoses cryptic arboreal species of the Cyrtodactylus brevipalmatus group (Squamata, Gekkonidae) with descriptions of four new species from Thailand. ZooKeys, 1129, 109–162. https://doi.org/10.3897/zookeys.1129.90535
  16. Grismer, L.L. & Grismer, J.L. (2017) A re-evaluation of the phylogenetic relationships of the Cyrtodactylus condorensis group (Squamata; Gekkonidae) and a suggested protocol for the characterization of rock-dwelling ecomorphology in Cyrtodactylus. Zootaxa, 4300 (4), 486–504. https://doi.org/10.11646/zootaxa.4300.4.2
  17. Grismer, L.L., Poyarkov, N.A., Quah, E.S.H., Grismer, J.L. & Wood Jr., P.L. (2022c) The biogeography of bent-toed geckos, Cyrtodactylus (Squamata: Gekkonidae). PeerJ, 10, e13153. https://doi.org/10.7717/peerj.13153
  18. Grismer, L.L., Rujirawan, A., Yodthong, S., Stuart, B.L., Le, M.D., Le, D.T., Chuaynkern, Y., Wood Jr., P.L. & Aowphol, A. (2022a) The taxonomy and phylogeny of the Cyrtodactylus brevipalmatus group (Squamata: Gekkonidae) with emphasis on C. interdigitalis and C. ngati. Vertebrate Zoology, 72, 245–269. https://doi.org/10.3897/vz.72.e80615
  19. Grismer, L.L., Pawangkhanant, P., Idiiatullina, S.S., Trofimets, A.V., Nazarov, R.A., Suwannapoom, C. & Poyarkov, N.A. (2023d) A new species of Cyrtodactylus Gray, 1827 (Squamata: Gekkonidae) from the Thai-Malay Peninsula and the independent evolution of cave ecomorphology on opposite sides of the Gulf of Thailand. Zootaxa, 5352 (1), 109–136. https://doi.org/10.11646/zootaxa.5352.1.4
  20. Grismer, L.L., Rujirawan, A., Chomdej, S., Suwannapoom, C., Yodthong, S., Aksornneam, A. & Aowphol, A. (2023b) A new species of the Cyrtodactylus brevipalmatus group (Squamata; Gekkonidae) from the uplands of western Thailand. ZooKeys, 1141, 93–118. https://doi.org/10.3897/zookeys.1141.97624
  21. Grismer, L.L, Wood Jr., P.L., Thura, M.K., Quah, E.S.H., Grismer, M.S., Murdoch, M.L., Espinoza, R.E. & Lin, A. (2019) A new Cyrtodactylus Gray, 1827 (Squamata, Gekkonidae) from the Shan Hills and the biogeography of Bent-toed Geckos from eastern Myanmar. Zootaxa, 4446 (4), 477–500. https://doi.org/10.11646/zootaxa.4446.4.4
  22. Grismer, L.L., Wood Jr., P.L., Cota, M., Grismer, M.S., Murdoch, M.L., Augilar, C. & Grismer, J.L. (2017) Out of Borneo, again and again: biogeography of the Stream Toad genus Ansonia Stoliczka (Anura: Bufonidae) and the discovery of the first limestone cave-dwelling species. Biological Journal of the Linnean Society, 120, 371–395. https://doi.org/10.1111/bij.12886
  23. Grismer, L.L. Wood Jr., P.L., Thura, M.K., Zin, T., Quah, E.S.H., Murdoch, M.L., Grismer, M.S., Lin, A., Kyaw, H. & Lwin, N. (2018) Twelve new species of Cyrtodactylus Gray (Squamata: Gekkonidae) from isolated limestone habitats in east- central and southern Myanmar demonstrate high localized diversity and unprecedented microendemism. Zoological Journal of the Linnean Society, 182, 862–959. https://doi.org/10.1093/zoolinnean/zlx057
  24. Grismer, L.L., Wood Jr., P.L., Poyarkov, N.A., Le, M.D., Karunarathna, S., Chomdej, S., Suwannapoom, C., Qi, S., Liu, S., Che, J., Quah, E.S.H., Kraus, F., Oliver, P.M., Riyanto, A., Pauwels, O.S.G. & Grismer, J.L. (2021a) Karstic landscapes are foci of species diversity in the World’s Third-Largest Vertebrate genus Cyrtodactylus Gray, 1827 (Reptilia: Squamata; Gekkonidae). Diversity, 13, 183. https://doi.org/10.3390/d13050183
  25. Grismer, L.L., Wood Jr., P.L., Poyarkov, N.A., Le, M.D., Kraus, F., Agarwal, I., Oliver, P.M., Nguyen, S.N., Nguyen, T.Q., Karunarathna, S., Welton, L.J., Stuart, B.L., Luu, V.Q., Bauer, A.M., O’Connell, K.A., Quah, E.S.H., Chan, K.O., Ziegler, T., Ngo, H., Nazarov, R.A., Aowphol, A., Chomdej, S., Suwannapoom, C., Siler, C.D., Anuar, S,. Tri, N.V. & Grismer, J.L. (2021b) Phylogenetic partitioning of the third-largest vertebrate genus in the world, Cyrtodactylus Gray, 1827 (Reptilia; Squamata; Gekkonidae) and its relevance to taxonomy and conservation. Vertebrate Zoology, 71, 101–154. https://doi.org/10.3897/vertebrate-zoology.71.e59307
  26. Grismer, L.L., Anuar, M.S.S., Muin, M.A., Ahmad, N & Quah, E.S.H. (2023a) Genetic and morphological concordance and discordance within the Cyrtodactylus brevipalmatus group (Squamata: Gekkonidae). Zootaxa, 5353 (3), 265–275. https://doi.org/10.11646/zootaxa.5353.3.4
  27. Hall, R. (2013) The paleogeography of Sundaland and Wallacea since the Late Jurassic. Journal of Limnology, 72, 1–17. https://doi.org/10.4081/jlimnol.2013.s2.e1
  28. Hillis, D.M. (2019) Species delimitation in herpetology. Journal of Herpetology, 53, 3–12. https://doi.org/10.1670/18-123
  29. Hillis, D.M., Moritz, C. & Mable, B.K. (1996) Molecular Systematics. 2nd Edition. Sinauer Associates, Sunderland, Massachusetts, XVI + 655 pp. https://doi.org/10.2307/1447682
  30. Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522.
  31. https://doi.org/10.1093/molbev/msx281
  32. Hughes, J.B., Round, P.D. & Woodruff, D.S. (2003) The Indochinese-Sundaic faunal transition at the Isthmus of Kra: an analysis of resident forest bird species distributions. Journal of Biogeography, 30, 569–580. https://doi.org/10.1046/j.1365-2699.2003.00847.x
  33. Huelsenbeck, J.P., Bollback, J.P. & Levine, A.M. (2002) Inferring the root of a phylogenetic tree. Systematic Biology, 51, 332–343. https://doi.org/10.1080/106351502753475862
  34. Huelsenbeck, J.P., Ronquist, F., Nielsen, R. & Bollback, J.P. (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294, 2310–2314. https://doi.org/10.1126/science.1065889
  35. Husson, F., Josse, J., Le, S. & Mazet, J. (2017) FactoMine R: exploratory data analysis and data mining. R package. Version 1.36. [program]
  36. Kassambara, A. & Mundt, F. (2017) Factoextra: extract and visualize the result of multivariate data analyses. R package, Version 1.0.5.999. [program]
  37. Kirchberger, P.C., Sefc, K.M., Sturmbauer, C. & Koblmüller, S. (2014) Outgroup effects on root position and tree toplogy in AFLP phylogeny of a rapidly radiating lineage of cichlid fish. Molecular Phylogenetics and Evolution, 70, 57–62. https://doi.org/10.1016/j.ympev.2013.09.005
  38. Landis, M., Matzke, N.J., Moore, B.R. & Huelsenbeck, J.P. (2013) Bayesian analysis of biogeography when the number of areas is large. Systematic Biology, 62, 789–804. https://doi.org/10.1093/sysbio/syt040
  39. Le, D.T., Sitthivong, S., Tran, T.T., Grismer, L.L., Nguyen, T.Q., Le, M.D., Ziegler, T. & Luu, V.Q. (2021) First record of the Cyrtodactylus brevipalmatus group (Squamata: Gekkonidae) from Vietnam with description of a new species. Zootaxa, 4969 (3), 492–510. https://doi.org/10.11646/zootaxa.4969.3.3
  40. Lleonart, J., Salat, J. & Torres, G.J. (2000) Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology, 205, 85–93. https://doi.org/10.1006/jtbi.2000.2043
  41. Lohman, D.J., de Bruyn, M., Page, T., von Rintelen, K., Hall, R., Ng, P.K.L., Shih, H.T., Carvalho, G.R. & von Rintelen, T. (2011) Biogeography of the Indo-Australian archipelago. Annual Review of Evolution, Ecology and Systematics, 42, 205–226. https://doi.org/10.1146/annurev-ecolsys-102710-145001
  42. Macey, J.J., Larson, A., Ananjeva, N., Fang, Z. & Papenfuss, T.J. (1997) Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Molecular Biology and Evolution, 14, 91–104. https://doi.org/10.1093/oxfordjournals.molbev.a025706
  43. Matsui, M., Tominaga, A., Liu, W.-Z., Khonsue, W., Grismer, L.L., Diesmos, A.C., Das, I., Sudin, A., Yambun, P., Yong, H.S., Sukumaran, J. & Brown, R.M. (2010) Phylogenetic relationships of Ansonia from Southeast Asia inferred from mitochondrial DNA sequences: systematic and biogeographic implications (Anura: Bufonidae). Molecular Phylogenetics and Evolution, 54, 561–570. https://doi.org/10.1016/j.ympev.2009.08.003
  44. Matzke, N.J. (2013) Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers in Biogeography, 5, 242–248. https://doi.org/10.21425/F55419694
  45. Matzke, N.J. (2014) Model selection in historical biogeography reveals that founder-effect speciation is a crucial process in island clades. Systematic Biology, 63, 1–21. https://doi.org/10.1093/sysbio/syu056
  46. Miller, M.A., Pfeiffe, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE), New Orleans (USA), November 2010. IEEE, n.l., pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129
  47. Minh, Q., Nguyen, M.A.T. & von Haeseler, A. (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30, 1188–1195. https://doi.org/10.1093/molbev/mst024
  48. Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300
  49. Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & Wagner, H. (2020) Package ‘vegan’. Version 2.5-7. Available from: https://cran.r-project.org/web/packages/vegan/ (accessed 19 March 2024)
  50. Pagès, J. (2015) Multiple Factor Analysis by Example Using R. CRC Press, New York, New York, 272 pp. https://doi.org/10.1201/b17700
  51. Paradis, E. & Schliep, K. (2018) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528.
  52. https://doi.org/10.1093/bioinformatics/bty633
  53. Poyarkov, N.A., Nguyen, T.V., Popov, E.S., Geissler, P., Pawangkhanant, P., Neang, T., Suwannapoom, C., Ananjeva, N.B. & Orlov, N.L. (2023) Recent progress in taxonomic studies, biogeographic analysis, and revised checklist of reptiles in Indochina. Russian Journal of Herpetology, 30 (5), 255–476. https://doi.org/10.30906/1026-2296-2023-30-5-255-476
  54. Quah, E.H.S., Grismer, L.L., Wood Jr., P.L., Thura, M.K., Oaks, J.R. & Lin, A. (2019) Discovery of the westernmost population of the genus Ansonia Stoliczka (Anura, Bufonidae) with the description of a new species from the Shan Plateau of eastern Myanmar. Zootaxa, 4656 (3), 545–571. https://doi.org/10.11646/zootaxa.4656.3.11
  55. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from: http://www.R-project.org (accessed 1 June 2022)
  56. Rambaut, A. & Drummond, A.J. (2013) TreeAnnotator. Version 1.8.0 MCMC Output Analysis. Available from: https://doi.org/10.1017/cbo9780511819049.020 (accessed 18 March 2024)
  57. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systemastic Biology, 67, 901–904. https://doi.org/10.1093/sysbio/syy032
  58. Ree, R.H. & Sanmartín, I. (2018) Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. Journal of Biogeography, 2018, 1–9. https://doi.org/10.1111/jbi.13173
  59. Ree, R.H. & Smith, S.A. (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57, 4–14. https://doi.org/10.1080/10635150701883881
  60. Ronquist, F. (1997) Dispersal–vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology, 46, 195–203. https://doi.org/10.1093/sysbio/46.1.195
  61. Rosenfeld, J.A., Payne, A. & DeSalle, R. (2012) Random roots and lineage sorting. Molecular Phylogenetics and Evolution, 64, 12–20. https://doi.org/10.1016/j.ympev.2012.02.029
  62. Rota-Stabelli, O. & Telford, M.J. (2008) A multi-criterion approach for the selection of optimal outgrous in phylogeny: recovering some support for Mandibulata over Myriochelata using mitogenomics. Molecular Phylogenetics and Evolution, 48, 103–111. https://doi.org/10.1016/j.ympev.2008.03.033
  63. Smith, M.A. (1923) Notes on reptiles and batrachians from Siam and Indo-China. No. 2. Journal of the Natural History Society of Siam, 6, 47–53.
  64. Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022–3027. https://doi.org/10.1093/molbev/msab120
  65. Thorpe, R.S. (1975) Quantitative handling of characters useful in snake systematics with particular reference to intraspecific variation in the Ringed Snake Natrix natrix (L.). Biological Journal of the Linnean Society, 7, 27–43. https://doi.org/10.1111/j.1095-8312.1975.tb00732.x
  66. Thorpe, R.S. (1983) A review of the numerical methods for recognising and analysing racial differentiation. In: Felsenstein, J. (Ed.), Numerical Taxonomy. NATO ASI Series. Vol. 1. Springer, Berlin and Heidelberg, pp. 404–423. https://doi.org/10.1007/978-3-642-69024-2_43
  67. Trifinopoulos, J., Nguyen, L.T., von Haeseler, A. & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44, 232–235. https://doi.org/10.1093/nar/gkw256
  68. Turan, C. (1999) A note on the examination of morphometric differentiation among fish populations: The Truss System. Turkish Journal of Zoology, 23, 259–263.
  69. Uetz, P., Freed, P. & Hošek, J. (2023) The reptile database. Available from: http://www.reptiledatabase.org (accessed 16 March 2023)
  70. Ulber, T. (1993) Bemerkungen über cyrtodactyline Geckos aus Thailand nebst Beschreibungen von zwei neuen Arten (Reptilia: Gekkonidae). Mitteilungen aus dem Museum für Naturkunde in Berlin, 69, 187–200. https://doi.org/10.1002/mmnz.19930690202
  71. Upton, D.R., Bristow, C.S. & Hurford, A.J. (1995) The denudational history of western Thailand using apatite fission track analysis: implications for the tectonic models of SE Asia. Journal of Geology, Geological Survey of Vietnam, Hanoi, Series B, 322.
  72. Upton, D.R., Bristow, C.S., Hurford, A.J. & Carter, A. (1997) Tertiary tectonic denudation in Northwestern Thailand: provisionary results from apatite fission track analysis. Proceedings of the International Conference of Stratigraphy and Tectonic Evolution in Southeast Asia and the South Pacific and Associated Meeting of the IGCP 359 and IGCP 383, Bangkok, Thailand, 1, 421–431.
  73. Wheeler, W.C. (1990) Nucleic acid sequence phylogeny and random outgroups. Cladistics, 6, 363–367. https://doi.org/10.1111/j.1096-0031.1990.tb00550.x
  74. Wilcox, T., Zwickl, D.J., Heath, T.A. & Hillis, D.M. (2002) Phylogenetic relationships of the Dwarf Boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution, 25, 361–371. https://doi.org/10.1016/s1055-7903(02)00244-0
  75. Wood Jr., P.L., Heinicke, M.P., Jackman, T.R. & Bauer, A.M. (2012) Phylogeny of bent-toed geckos (Cyrtodactylus) reveals a west to east pattern of diversification. Molecular Phylogenetics and Evolution, 65, 992–1003. https://doi.org/10.1016/j.ympev.2012.08.025
  76. Woodruff, D.S. (2010) Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodiversity Conservation, 19, 919–941. https://doi.org/10.1007/s10531-010-9783-3