Abstract
Based on past and expanded DNA sampling, the orthopteran families Stenopelmatidae and Anostostomatidae, as currently structured, are shown to be non-monophyletic. The splay-footed cricket genus Comicus is confirmed to be genetically distinct from all Stenopelmatidae. We add two specimens to our previously published phylogenetic tree for New World Stenopelmatus Jerusalem cricket species and report the first multilocus DNA recovery for S. ater from Costa Rica. Male internal genitalia may be of systematic value in Jerusalem crickets, but we believe they should be analyzed when in their unfolded, “physiologically functional” configuration, where morphological characters can be seen in more detail when compared to their preserved, folded state. We describe Stenopelmatus nuevoguatemalae n. sp. from Guatemala.
References
- Carbajal-Márquez, R.A., Sigala-Rodríguez, J.J., Escoto-Moreno, J.A., Jones, J.M. & Montaño-Ruvalcaba, C. (2022) New prey items of Crotalus campbelli (Serpentes: Viperidae) from Mexico. Phyllomedusa, 21, 95–98. https://doi.org/10.11606/issn.2316-9079.v21i1p95-98
- Cigliano, M.M., Braun, H., Eades, D.C. & Otte, D. (2024) Orthoptera Species File. Available from: http://orthoptera.speciesfile.org/ (accessed 7 March 2024)
- Gorochov, A.V. (2021) The families Stenopelmatidae and Anostostomatidae (Orthoptera). 1. Higher classification, new and little known taxa. Entomological Review, 100, 1106–1151. [2020] https://doi.org/10.1134/S0013873820080084
- Gray, D.A., Weissman, D.B., Cole, J.A., Lemmon, E.M. & Lemmon, A.R. (2020) Multilocus phylogeny of Gryllus field crickets (Orthoptera: Gryllidae: Gryllinae) utilizing anchored hybrid enrichment. Zootaxa, 4750 (3), 328–348. https://doi.org/10.11646/zootaxa.4750.3.2
- Gutiérrez-Rodríguez, J., Zaldívar-Riverón, A., Weissman, D.B. & Vandergast, A.G. (2022) Extensive species diversification and marked geographic phylogenetic structure in the Mesoamerican genus Stenopelmatus (Orthoptera: Stenopelmatidae: Stenopelmatinae) revealed by mitochondrial and nuclear 3RAD data. Invertebrate Systematics, 36, 1–21. https://doi.org/10.1071/IS21022
- Hawlitschek, O., Morinière, J., Lehmann, G.U.C., Kropf, M., Dunz, F., Detcharoen, M., Schmidt, S., Hausmann, A., Szucsich, N.U., Cattano-Wyler, S.A. & Haszprunar, G. (2016) DNA barcoding of crickets, katydids and grasshoppers (Orthoptera) from Central Europe with focus on Austria, Germany and Switzerland. Molecular Ecology Resources, 17, 1037–1053. https://doi.org/10.1111/1755-0998.12638
- Hubbell, T.H. (1977) Middle American cave-crickets and allies. I. The group Phoberopodes, with a review of the phallic structures of the Ceuthophilinae (Orthoptera Saltatoria: Ensifera: Rhaphidophoridae). In: Subterranean Fauna of Mexico. Part III. Further results of the Italian zoological missions to Mexico, sponsored by the National Academy of Lincei (1973 and 1975). No. 171. Accademia Nazionale dei Lincei, Rome, pp. 275–324.
- Kock, L.-S., Körs, E., Husemann, M., Davaa, L. & Dey, L.-S. (2024) Barcoding fails to delimit species in Mongolian Oedipodinae (Orthoptera, Acrididae). Insects, 15, 128, 1–18. https://doi.org/10.3390/insects15020128
- McClung, C.E. & Asana, J.J. (1933) The chromosomes of Schizodactylus monstrosus. Journal of Morphology, 55, 185–191. https://doi.org/10.1002/jmor.1050550111
- Moulton, M.J., Song, H. & Whiting, M.F. (2010) Assessing the effects of primer specificity on eliminating numt co-amplification in DNA barcoding: A case study from Orthoptera (Arthropoda: Insecta). Molecular Ecology Resources, 10, 615–627. https://doi.org/10.1111/j.1755-0998.2009.02823.x
- Ortego, J., Kaya, S., Çýplak, B. & Knowles, L.L. (2023) Microgeographic speciation in a complex of Anatolian bush crickets facilitated by fast evolution of reproductive isolation. Journal of Evolutionary Biology, voad008. https://doi.org/10.1093/jeb/voad008
- Pereira, R.J., Ruiz-Ruano, F.J., Thomas, C.J.E., Pérez-Ruiz, M., Jiménez-Bartolomé, M., Liu, S., de la Torre, J. & Bella, J.L. (2021) Mind the numt: Finding informative mitochondrial markers in a giant grasshopper genome. Journal of Zoological Systematics and Evolutionary Research, 59 (3), 635–645. https://doi.org/10.1111/jzs.12446
- Ruiz-Mendoza, P.X., Jasso-Martínez, J.M., Gutiérrez-Rodríguez, J., Samacá-Sáenz, E. & Zaldívar-Riverón, A. (2023) Mitochondrial genome characterization and mitogenome phylogenetics in the central Mexican Stenopelmatus talpa complex (Orthoptera: Stenopelmatidae: Stenopelmatini). Revista Mexicana de Biodiversidad, 94, e945094. https://doi.org/10.22201/ib.20078706e.2023.94.5094
- Shin, S., Baker, A.J., Enk, J., McKenna, D.D., Foquet, B., Vandergast, A.G., Weissman, D.B. & Song, H. (2024) Development of Orthoptera-specific target enrichment (OR-TE) probes for resolving relationships over broad timescales. Available from: https://doi.org/10.21203/rs.3.rs-3918796/v1 (accessed 26 March 2024)
- Song, H., Amédégnato, C., Cigliano, M.M., Desutter-Grandcolas, L., Heads, S.W., Huang, Y., Otte, D. & Whiting, M.F. (2015) 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics, 31, 621–651. https://doi.org/10.1111/cla.12116
- Song, H., Bethoux, O., Shin, S., Donath, A., Letsch, H., Liu, S., McKenna, D.D., Meng, G., Misof, B., Podsiadlowski, L., Zhou, X., Wipfler, B. & Simon, S. (2020) Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. Nature Communication, 11, 4939. https://doi.org/10.1038/s41467-020-18739-4
- Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
- Suastes-Jiménez, M.Á, Barrientos-Lozano, L., Gutiérrez-Rodríguez, J., Jasso-Martínez, J.M. & Zaldívar-Riverón, A. (2023) Taxonomic revision of the Stenopelmatus talpa species group (Orthoptera: Stenopelmatidae: Stenopelmatini). Revista Mexicana de Biodiversidad, 94 (e945184), 1–25. https://doi.org/10.22201/ib.20078706e.2023.94.5184
- Uluar, O. & Çiplak, B. (2020) Evolution, characterization and phylogenetic utility of ITS2 gene in Orthoptera and some Polyneoptera: Highly variable at the order level and highly conserved at the species level. Zootaxa, 4780 (1), 54–76. https://doi.org/10.11646/zootaxa.4780.1.2
- Vandergast, A.G., Weissman, D.B., Wood, D.A., Rentz, D.C.F., Bazelet, C.S. & Ueshima, N. (2017) Tackling an intractable problem: Can greater taxon sampling help resolve relationships within the Stenopelmatoidea (Orthoptera: Ensifera)? Zootaxa, 4291 (1), 1–33. https://doi.org/10.11646/zootaxa.4291.1.1
- Weissman, D.B. (2001) Communication and reproductive behaviour in North American Jerusalem crickets (Stenopelmatus) (Orthoptera: Stenopelmatidae). In Field, L.H. (Ed.), The Biology of Wetas, King Crickets, and Their Allies. CAB International, New York, New York, pp. 351–373. https://doi.org/10.1079/9780851994086.0351
- Weissman, D.B., Judge, K.A., Williams, S.C., Whitman, D.W. & Lee, V.F. (2008) Small-male mating advantage in a species of Jerusalem cricket (Orthoptera: Stenopelmatinae: Stenopelmatus). Journal of Orthoptera Research, 17, 321–332. https://doi.org/10.1665/1082-6467-17.2.321
- Weissman, D.B. & Gray, D.A. (2019) Crickets of the genus Gryllus in the United States (Orthoptera: Gryllidae: Gryllinae). Zootaxa, 4705 (1), 1–277. https://doi.org/10.11646/zootaxa.4705.1.1
- Weissman, D.B., Vandergast, A.G., Song, H., Shin, S., McKenna, D.D. & Ueshima, N. (2021) Generic relationships of New World Jerusalem crickets (Orthoptera: Stenopelmatoidea: Stenopelmatinae), including all known species of Stenopelmatus. Zootaxa, 4917 (1), 1–122. https://doi.org/10.11646/zootaxa.4917.1.1
- White, M.J.D. (1973) Animal Cytology and Evolution. Third Edition. Cambridge University Press, New York, New York, 961 pp.
- Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. (2018) ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19, 153. https://doi.org/10.1186/s12859-018-2129-y