Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-05-09
Page range: 49-66
Abstract views: 5
PDF downloaded: 1

Diversity of wasps (Hymenoptera) in alfalfa (Medicago sativa L.) farms in Basrah Governorate, Southern Iraq

Department of Biology; College of Science; University of Basrah; Iraq
Department of Biology; College of Education for Pure Science; University of Basrah
Department of Biology; College of Science; University of Basrah; Iraq
Department of Plant Protection; College of Agriculture; Chamran University of Ahwaz and Department of Agriculture; Abadan; Iran
Hymenoptera alfalfa insect biodiversity wasp diversity Basrah Iraq

Abstract

Studies on the diversity of parasitoid wasps in agroecosystems exemplify the first stage of recognizing the best species to be used in biological control programs. There is an increased effort to recognize the diversity of pests in agroecosystems, but information on agricultural environments in Iraq is still unknown. This study is interested in the diversity of wasps in a cultivated area in Basrah governorate and the identification of dominant species for potential application in biological control studies. Samples were collected from alfalfa farms between January and December 2020 using two insect collection methods: sweep nets and yellow pan traps in four stations in Basrah governorate. This paper confirms that there is a high diversity of wasp species in agricultural environments. During this study, 18 wasp species were recorded for the first time in Iraq. Gronotoma micromorpha recorded the highest annual relative abundance value of 26.5%, while Chalcis biguttata recorded the lowest relative abundance of 0.89% in most agricultural environments. Numerous studies on G. micromorpha indicate that it is a parasitoid of Liriomyza species (Diptera). Thus, this species may be an important agent in the biological control of this pest.

 

References

  1. Abe, Y. & Tahara, M. (2003) Daily progeny production and thermal influence on development and adult longevity of the leafminer parasitoid, Gronotoma micromorpha (Hym., Eucoilidae). Journal of Applied Entomology, 127, 477−480. https://doi.org/10.1046/j.1439-0418.2003.00790.x
  2. Abe, Y. & Konishi, K. (2004) Taxonomic notes on Gronotoma (Hymenoptera: Eucoilidae) parasitic on the serpentine leafminer, Liriomyza trifolii (Diptera: Agromyzidae). ESAKIA, 44, 103−110. https://doi.org/10.5109/2686
  3. Abe, Y. (2001) Egg-pupal and larval-pupal parasitism in the parasitoid Gronotoma micromorpha (Hymenoptera: Eucoilidae). Applied Entomology and Zoology, 36, 479−482. https://doi.org/10.1303/aez.2001.479
  4. Aghadokht, P., Maźon, M., Fekrat, L., Rakhshani, E., Sadeghi Namaghi, H. & Nadimi, A. (2020) Parasitoid wasps diversity (Hymenoptera: Ichneumonidae) in diverse habitats of northeastern Iran. North-Western Journal of Zoology, 16 (2), 141–160.
  5. Al-Snafi, A.E., Khadem H.S., Al-Saedy, H.A., Alqahtani, A.M., Batiha, G.E.S. & Albolfazl, J.S. (2021) A review on Medicago sativa: A potential medicinal plant. International Journal of Biological and Pharmaceutical Sciences Archive, 01 (02), 22–33. https://doi.org/10.30574/ijbpsa.2021.1.2.0302
  6. Anderson, A., McCormack, S., Helden, A., Sheridan, H., Kinsella, A. & Purvis, G. (2011) The potential of parasitoid Hymenoptera as bioindicators of arthropod diversity in agricultural grasslands. Journal of Applied Ecology, 48 (2), 382–390. https://doi.org/10.1111/j.1365-2664.2010.01937.x
  7. Askew, R.R. (1968) Hymenoptera. 2. Chalcidoidea section (b). Handbook for the Identification of British Insects, VIII (2b), 1−35.
  8. Beardsley, J.W. (1989) Hawaiian Eucoilidae (Hymenoptera: Cynipoidea). Key to genera and taxonomic notes on apparently non-endemic species. Proceedings of the Hawaiian Entomological Society, 29, 165−193.
  9. Beardsley, J.W. (1990) The genus Kleidotoma Westwood in Hawaii, with descriptions of three new species (Hymenoptera: Cynipoidea: Eucoilidae). Proceedings of the Hawaiian Entomological Society, 30, 131−146.
  10. Bennett, A.M.R., Sheffield, C.S. & deWaard, J.R. (2019) Hymenoptera of Canada. ZooKeys, 819, 311–360. https://doi.org/10.3897/zookeys.819.28510
  11. Bishop, T.R., Robertson, M.P., van Rensburg, B.J. & Parr, C.L. (2015) Contrasting species and functional beta diversity in montane ant assemblages. Journal of Biogeography, 42 (9), 1776–1786. https://doi.org/10.1111/jbi.12537
  12. Bouček, Z. (1951) The first revision of the European species of the family Chalcididae (Hymenoptera). Acta Entomologica Musei Nationalis Pragae Supplementum, 1, 1−108.
  13. Bouček, Z. (1959) A Study of central European Eulophidae: Eulophinae (Hymenoptera). Acta Entomologica Musei Nationalis Pragae, 33, 117−170.
  14. Buffington, M.L. (2002) Description of Aegeseucoela Buffington, new name, with notes on the status of Gronotoma Förster (Hymenoptera: Figitidae: Eucoilinae). Proceedings of the Entomological Society of Washington, 104, 589−601.
  15. Buffington, M.L., Forshage, L.M., Liljeblad, J., Tang, C.T. & van Noort, S. (2020) World Cynipoidea (Hymenoptera): A key to higher level groups. Insect Systematics and Diversity, 4 (4), 1−69. https://doi.org/10.1093/isd/ixaa003
  16. Buffington, M.L. & van Noort, S. (2007) A world revision of the Pycnostigminae (Cynipoidea: Figitidae) with descriptions of seven new species. Zootaxa, 1392 (1), 1−30. https://doi.org/10.11646/zootaxa.1392.1.1
  17. Buhl, P.N. (2004a) New African Platygastrinae (Hymenoptera: Platygastridae). Folia Entomologica Hungarica, 65, 65−84.
  18. Buhl, P.N. (2004b) New Australasian Platygastrinae (Hymenoptera: Platygastridae). Folia Entomologica Hungarica, 65, 85−105.
  19. Buhl, P.N. (2016) New European species of Platygastrinae, with an updated list of Latvian species of Platygastrinae and Sceliotrachelinae (Hymenoptera: Platygastridae). Latvijas Entomologs, 53, 3−13.
  20. Chaudhary, A., Shivam, Sachan, N. & Chandra, P. (2020) A Comprehensive Review: Medicago sativa. International Journal of Pharmaceutical Sciences Review and Research, 65 (1), 194−200. https://doi.org/10.47583/ijpsrr.2020.v65i01.029
  21. Cuartas-Hernández, S.E. & Gómez-Murillo, L. (2015) Effect of biotic and abiotic factors on diversity patterns of anthophyllous insect communities in a tropical mountain forest. Neotropical Entomology 44, 214–223. https://doi.org/10.1007/s13744-014-0265-2
  22. Dang, K. & Doi, D. (2020) Study of biodiversity of wasps and bees in Kota, Rajasthan, India. Journal of Entomology and Zoology Studies, 8 (6), 807−810.
  23. Fand, B.B., Kamble, A.L. & Kumar, M. (2012) Will climate change pose serious threat to crop pest management: A critical review. International Journal of Scientific and Research Publications, 2 (11), 1–14.
  24. Fergusson, N.D.M. (1980) A revision of the British species of Dendrocerus Ratzeburg (Hymenoptera: Ceraphronoidea) with a review of their biology as aphid hyperparasites. Bulletin of the British Museum (Natural History) Entomology, 41 (4), 255−314. https://doi.org/10.5962/bhl.part.28549
  25. Ferrière, C. & Kerrich, G.J. (1958) Hymenoptera. Chalcidoidea section (a). Handbook for the Identification of British Insects, VIII (2a), 1−42.
  26. Fouts, R.M. (1920) Revision of the North American wasps of the subfamily Platygasterinae. Proceedings of the United States National Museum, 63 (2484), 1−145. https://doi.org/10.5479/si.00963801.63-2484.1
  27. Goulet, H. & Huber, J.T. (Eds.) (1993) Hymenoptera of the world: an identification guide to families. Agriculture Canada Research Branch Publication 1894/E. Centre for Land and Biological Resources Research, Ottawa, Ontario, vii + 668 pp.
  28. Iqbal, T., Ahmad, S., Shah, M., Usman, A., Sohail, K. & Shahjeer, K. (2018) Illustrated key to the genera of family Chalcididae (Hymenoptera: Chalcidoidea) from various ecological zones of Khyber Pakhtunkhwa, Pakistan. International Journal of Agriculture and Biology, 20 (5), 1049−1054.
  29. Jacques, G.C., Souza,M.M., Coleho, H.J., Vicente, L.O. & Silveira, L.C.P. (2015) Diversity of social wasps (Hymenoptera: Vespidae: Polistinae) in an agricultural environment in Bambuí, Minas Gerais, Brazil. Sociobiology, 62 (3), 439−445. https://doi.org/10.13102/sociobiology.v62i3.738
  30. Karl, I., Stoks, R., De Block, M., Janowitz, S.A. & Fischer, K. (2011) Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function. Global Change Biology, 17 (2), 676−687. https://doi.org/10.1111/j.1365-2486.2010.02277.x
  31. Khaliq, A., Javed, M., Sohail, M. & Sagheer, M. (2014) Environmental effects on insects and their population dynamics. Journal of Entomology and Zoology Studies, 2 (2), 1−7.
  32. Kim, K.C. (2017) Taxonomy and management of insect biodiversity. In: Foottit, R.G. & Adler, P.H. (Eds.), Insect Biodiversity: Science and Society. 2nd Edition. John Wiley & Sons, Hoboken, New Jersey, pp. 767−782. https://doi.org/10.1002/9781118945568.ch24
  33. Klein, R.P., Somavilla, A., Köhler, A., Cademartori, C.V. & Forneck, E.D. (2015) Space-time variation in the composition, richness and abundance of social wasps (Hymenoptera: Vespidae: Polistinae) in a forest-agriculture mosaic in Rio Grande do Sul, Brazil. Acta Scientiarum. Biological Sciences, 37, 327−335. https://doi.org/10.4025/actascibiolsci.v37i3.27853
  34. Kocmánková, E., Trnka, M., Juroch, J., Dubrovský, M., Semerádová, D., Možný, M. & Žalud, Z. (2009) Impact of climate change on the occurrence and activity of harmful organisms. Plant Protection Science, 45, S48–S52. https://doi.org/10.17221/2835-PPS
  35. Komonen, A., Penttilä, R., Lindgren, M. & Hanski, I. (2000) Forest fragmentation truncates a food chain base on an old-growth forest bracket fungus. Oikos, 90, 119–126. https://doi.org/10.1034/j.1600-0706.2000.900112.x
  36. Leksono, A.S. (2007) Metode Pencuplikan serangga, Analisis Dan Pengawetan Hewan Darat. Universitas Brawijaya, Malang. [unknown pagination]
  37. Longino, J.T., Coddington, J. & Colwell, R.K. (2002) The ant fauna of a tropical rain forest: estimating species richness three different ways. Ecology, 83 (3), 689–702. https://doi.org/10.2307/3071874
  38. Maeto, K., Noerdjito W.A., Belokobylskij, S.A. & Fukuyama, K. (2009) Recovery of species diversity and composition of braconid parasitic wasps after reforestation of degraded grasslands in lowland East Kalimantan. Journal of Insect Conservation, 13, 245–257. https://doi.org/10.1007/s10841-008-9164-3
  39. Magurran, A.E. (2004) Measuring Ecological Diversity. Blackwell Science Ltd, Oxford, 256 pp.
  40. Masner, L. (1980) Key to genera of Scelionidae of the Holarctic region, with descriptions of new genera and species (Hymenoptera: Proctotrupoidea). The Memoirs of the Entomological Society of Canada, 112, 1−54. https://doi.org/10.4039/entm112113fv
  41. Masner, L. & Garcia, J.L. (2002) The genera of Diapriinae (Hymenoptera: Diapriidae) in the new world. Bulletin of the American Museum of Natural History, 268, 1−138. https://doi.org/10.1206/0003-0090(2002)268<0001:TGODHD>2.0.CO;2
  42. Mansowr, Z.F., Kareem, D.K., Al-Mansour, N.A. & Moravvej, S.A. ( 2023a) Podagrion pachymerum (Walker 1833) (Hymenoptera: Torymidae)—A new record for Iraqi wasps from Basrah province. International Journal of Agriculture and Biology, 29 (6), 381–386. https://doi.org/10.17957/IJAB/15.2043
  43. Mansowr, Z.F., Kareem, D.K. & Al-Mansour, N.A. ( 2023b) First Record of three Species in Family Figitidae (Insecta: Hymenoptera) from Iraq. Iran Journal Ichthyology, 10, 189−196.
  44. Mason, N.W.H. & de Bello, F. (2013) Functional diversity: a tool for answering challenging ecological questions. Journal of Vegetation Science, 24, 777–780. https://doi.org/10.1111/jvs.12097
  45. Muesebeck, C.F.W. (1980) The Nearctic parasitic wasps of the genera Psilus Panzer and Coptera Say (Hymenoptera, Proctotrupoidea, Diapriidae). United States Department of Agriculture Technical Bulletin, 1617, i–iv + 1–71.
  46. Narendran, T.C. & van Achterberg, C. (2016) Revision of the family Chalcididae (Hymenoptera, Chalcidoidea) from Vietnam, with the description of 13 new species. ZooKeys, 576, 1−202. https://doi.org/10.3897/zookeys.576.8177
  47. Nastasi, L.F., Kresslein, R.L., Fowler, K.O. & Fernández Flores, S.R. (2023) Biodiversity and Classification of Wasps. WaspID Course. Available from: https://scholarsphere.psu.edu/resources/a0edbed3-a28f-4212-a8bc-7742851ecbd4 (accessed 29 April 2024) https://doi.org/10.26207/ax00-rk88
  48. Nimaan, M. (2021) Pharmacological properties of Medicago sativa (alfalfa). In: Gürçay, G. (Ed.), Book of Full Text of the 4th International Applied Sciences Congress. UBAK Publications, Karaman, pp. 1−6.
  49. Nixon, G.E.J. (1980) Diapriidae (Diapriinae). Hymenoptera, Proctotrupoidea. Handbook for the Identification of British Insects, VIII (3di), 1−55.
  50. Notton, D.G. & Mifsud, D. (2019) Diapriidae (Hymenoptera, Diaprioidea) of the Maltese Islands. Bulletin of the Entomological Society of Malta, 10, 29−33. https://doi.org/10.17387/BULLENTSOCMALTA.2019.04
  51. Noyes, J.S. & Valentine, E.W. (1989) Chalcidoidea (Insecta: Hymenoptera) - introduction, and review of genera in smaller families. Fauna of New Zealand, 18, 1−91.
  52. Nursal, E.F. (2014) Pengembangan media pembelajaran biologi smp pada konsep pola interaksi makhluk hidup berdasarkan inventarisasi serangga polinator pada bunga tanaman holtikultura di desa penyasawan kabupaten kampar. Biogenesis, 11 (1), 13−16. https://doi.org/10.31258/biogenesis.11.1.13-18
  53. Ode, P.J. & Heimpel, G. (2016) Editorial overview: Parasites/parasitoids/biological control: Communities without parasitoids? Current Opinion in Insect Science, 14, viii−x. https://doi.org/10.1016/j.cois.2016.03.006
  54. Overgaard, J. & Sorenses, J.G. (2008) Rapid thermal adaptation during field temperature variations in Drosophila melanogaster. Cryobiology, 56 (2), 159−162. https://doi.org/10.1016/j.cryobiol.2008.01.001
  55. Perillo, L.N., Neves, F. de S., Antonini, Y. & Martins, R.P. (2017) Compositional changes in bee and wasp communities along Neotropical mountain altitudinal gradient. PLoS ONE, 12 (7), 1−14. https://doi.org/10.1371/journal.pone.0182054
  56. Putnam, D.H., Russelle, M., Orloff, S., Kuhn, J., Fitzhugh, L., Godfrey, L., Kiess, A. & Long, R. (2001) Alfalfa, Wildlife and the Environment—The Importance and Benefits of Alfalfa in the 21st Century. California Alfalfa & Forage Association, Novato, 24 pp. [https://s3.wp.wsu.edu/uploads/sites/2071/2014/01/Alfalfa-Wildlife-and-the-Environment.pdf]
  57. Quicke, D.L.J. (2015) The Braconid and Ichneumonid Parasitoid Wasps: Biology, Systematics, Evolution and Ecology. Wiley Blackwell, Oxford, XV + 733 pp. https://doi.org/10.1002/9781118907085
  58. Raven, P.H. & Wagner, D.L. (2021) Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences, 118 (2), e2002548117. https://doi.org/10.1073/pnas.2002548117
  59. Robinet, C. & Roques, A. (2010) Direct impacts of recent climate warming on insect populations. Integrative Zoology, 5, 132−142. https://doi.org/10.1111/j.1749-4877.2010.00196.x
  60. Rosenzweig, M.L. (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge.
  61. Schoeninger, K., Souza, J.L.P., Krug, C. & Oliveira, M.L. ( 2016) Diversity of wasps (Hymenoptera: Vespidae) in conventional and organic guarana (Paullinia cupana var. sorbilis) crops in the Brazilian Amazon. Acta Amazonica, 49, 283−293. https://doi.org/10.1590/1809-4392201804560
  62. Skendžić, S., Zovko, M., Živković, I.P., Lešić, V. & Lemić, D. (2021) The Impact of Climate Change on Agricultural Insect Pests. Insects, 12 (5), 440. https://doi.org/10.3390/insects12050440
  63. Somavilla, A., Schoeninger, K., de Castro, D., Oliveira, M. & Krug, C. (2016) Diversity of wasps (Hymenoptera: Vespidae) in conventional and organic guarana (Paullinia cupana var. sorbilis) crops in the Brazilian Amazon. Sociobiology, 63 (4), 1051–1057. https://doi.org/10.13102/sociobiology.v63i4.1178
  64. Stephens, C.J. (2005) Impacts of Weed Invasion on Arthropod Biodiversity and Associated Community Structure and Processes. PhD Thesis, School of Earth and Environmental Sciences, University of Adelaide, Adelaide. [unknown pagination]
  65. Swenson, N.G., Anglada-Cordero, P. & Barone, J A. (2010) Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society B: Biological Sciences, 278, 877–884. https://doi.org/10.1098/rspb.2010.1369
  66. Trianto, M. & Marisa., F. (2020) Diversity of bees and wasp (Hymenoptera) in cowpea (Vigna sinensis L.) in agricultural area at Martapura District, Banjar Regency, South Kalimantan. Journal of Science and Technology, 9 (2), 29−33. https://doi.org/10.22487/25411969.2019.v9.i2.15174
  67. Trianto, M. & Purwanto, H. (2020) Morphological characteristics and morphometrics of Stingless Bees (Hymenoptera: Meliponini) in Yogyakarta, Indonesia. Biodiversitas, 21, 2619−2628. https://doi.org/10.13057/biodiv/d210633
  68. Van den Berg, H., Ankasah, D., Hassan, K., Muhammad, A., Widayanto, H.A., Wirasto, H.B. & Yully, I. (1995) Soybean stem fly, Melanagromyza sojae (Diptera: Agromyzidae), on Sumatra: seasonal incidence and the role of parasitism. International Journal of Pest Management, 41 (3), 127−133. https://doi.org/10.1080/09670879509371937
  69. Van Driesche, R.G., Carruthers, R.I., Center, T., Hoddle, M.S., Hough-Goldstein, J., Morin, L., Smith, L., Wagner, D.L., Blossey, B., Brancatini, V., Casagrande, R., Causton, C.E., Coetzee, J.A., Cuda, J., Ding, J., Fowler, S.V., Frank, J.H., Fuester, R., Goolsby, J., Grodowitz, M., Heard, T.A., Hill, M.P., Hoffmann, J.H., Huber, J., Julien, M., Kairo M.T.K., Kenis, M., Mason, P., Medal, J., Messing, R., Miller, R., Moore, A., Neuenschwander, P., Newman, R., Norambuena, H., Palmer, W.A., Pemberton, R., Perez Panduro, A., Pratt, P.D., Rayamajhi , M., Salom, S., Sands, D., Schooler, S., Schwarzländer, M., Sheppard, A., Shaw, R., Tipping, P.W. & van Klinken, R.D. (2010) Classical biological control for the protection of natural ecosystems. Biological Control, 54 (Supplement 1), S2–S33. https://doi.org/10.1016/j.biocontrol.2010.03.003
  70. Venette, R.C. (2017) Climate analyses to assess risks from invasive forest insects: Simple matching to advanced models. Current Forestry Reports, 3 (3), 255–268. https://doi.org/10.1007/s40725-017-0061-4.
  71. Weisser, W.W. & Siemann, E. (2008) Insects and ecosystem function. The various effects of insects on ecosystem functioning. Ecological Studies, 173, 3−24. https://doi.org/10.1007/978-3-540-74004-9_1
  72. Widhiono, I. (2015) Strategi Konservasi Serangga Pollinator. Universitas Jendral Soedirman, Purwokerto.
  73. Wilson, R.J. & Fox, R. (2021) Insect responses to global change offer signposts for biodiversity and conservation. Ecological Entomology, 46, 699–717. https://doi.org/10.1111/een.12970
  74. Winfree, R., Williams, N.M., Gaines, H., Ascher, J.S. & Kremen, C. (2008) Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA. Journal of Applied Ecology, 45 (3), 793−802. https://doi.org/10.1111/j.1365-2664.2007.01418.x
  75. Wratten, D.S., Gillespie, M., Decortye, A., Mader, E. & Desneux, N. (2012) Pollinator habitat enhancement: benefitS to other ecosystem services. Agriculture, Ecosystems & Environment, 159, 112−122. https://doi.org/10.1016/j.agee.2012.06.020
  76. Yoshimoto, C.M. (1983) Review of the North American Pnigalio Schrank (Hymenoptera: Eulophidae). Canadian Entomologist, 115 (8), 971–1000. https://doi.org/10.4039/Ent115971-8
  77. Yuliani, W. & Syamsuardi, D. (2013) Jenis-Jenis serangga pengunjung bunga Nerium oleander Linn. (Apocynaceae) di Kecamatan Pauh, Padang. Jurnal Biologi Universitas Andalas, 2 (2), 96−102.