Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-05-28
Page range: 263-274
Abstract views: 9
PDF downloaded: 1

The oldest Rhantus (Coleoptera, Dytiscidae) from the earliest Eocene Fur Formation, Denmark

Papanin Institute for Biology of Inland Waters Russian Academy of Sciences; 152742; Borok; Nekouzsky District; Yaroslavl Oblast; Russia
Department of Entomology; National Museum; Cirkusová 1740; CZ-193 00 Prague 9 – Horní Počernice; Czech Republic
Laboratory of Arthropods; A. A. Borissiak Paleontological Institute; Russian Academy of Sciences; 117647 Moscow; Russia; Paleontological Laboratory; Cherepovets State University; 162600 Cherepovets; Russia
Natural History Museum of Denmark; Universitetsparken 15; Copenhagen 2100; Copenhagen; Denmark
Coleoptera Dytiscidae Colymbetinae Rhantus Northern Europe Eocene fossil new species recent genus temperate elements

Abstract

Rhantus villumi sp. nov. is described and illustrated on the basis of a single specimen from the earliest Eocene Fur Formation, Denmark. With an estimated age of ca. 55.4 Ma, it represents the oldest member of an extant genus of the family Dytiscidae. However, the presence of Rhantus in the early Eocene is only slightly older than previous estimates, and generally agrees well with phylogenetic analyses of the subfamily Colymbetinae. The presence of a predominantly temperate genus in the presumably warm Lagerstätte is briefly discussed, supporting the hypothesis of temporary cooling, as suggested by several other invertebrate records from the Fur Formation. It is suggested that the new species could feed on mosquito larvae, which are known from the Lagerstätte. Finally, a record of another Dytiscidae species from the same locality is mentioned, but, due to poor preservation and lack of diagnostic characters, this fossil remains unidentified to genus or species level.

 

References

  1. Akulov, N.I., Frolov, A.O., Mashchuk, I.M. & Akulova, V.V. (2015) Jurassic deposits of the southern part of the Irkutsk sedimentary basin. Stratigraphy and Geological Correlation, 23 (4), 387–409. https://doi.org/10.1134/S0869593815040036 DOI: https://doi.org/10.1134/S0869593815040036
  2. Aditya, G. & Saha, G.K. (2006) Predation of the beetle Rhantus sikkimensis (Coleoptera: Dytiscidae) on the larvae of Chironomus Meigen (Diptera: Chironomidae) of the Darjeeling Himalayas of India. Limnologica, 36 (4), 251–257. https://doi.org/10.1016/j.limno.2006.07.004 DOI: https://doi.org/10.1016/j.limno.2006.07.004
  3. Archibald, S.B. & Farrell, B.D. (2003) Wheeler’s dilemma. Acta Zoologica Cracoviensia, 46 (Supplement – Fossil Insects), 17–23.
  4. Archibald, S.B., Johnson, K.R., Mathewes, R.W. & Greenwood, D.R. (2011) Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals. Proceedings of the Royal Society B, 278, 3679–3686. https://doi.org/10.1098/rspb.2011.0729 DOI: https://doi.org/10.1098/rspb.2011.0729
  5. Archibald, S.B. & Makarkin, V.N. (2006) Tertiary giant lacewings (Neuroptera: Polystoechotidae): revision and description of new taxa from western North America and Denmark. Journal of Systematic Palaeontology, 4 (2), 119–155. [Erratum: 4 (3), 307] https://doi.org/10.1017/S1477201906001817 DOI: https://doi.org/10.1017/S1477201906001817
  6. Archibald, S.B., Mathewes, R.W. & Aase, A. (2023) Eocene giant ants, Arctic intercontinental dispersal, and hyperthermals revisited: discovery of fossil Titanomyrma (Hymenoptera: Formicidae: Formiciinae) in the cool uplands of British Columbia, Canada. Canadian Entomologist, 155, e6. https://doi.org/10.4039/tce.2022.49 DOI: https://doi.org/10.4039/tce.2022.49
  7. Archibald, S.B., Mathewes, R.W. & Perfilieva, K.S. (2024) Fossil weaver ants (Hymenoptera, Formicidae, Oecophyllini) of the early Eocene Okanagan Highlands of far-western North America. Canadian Entomologist, 156, e2. https://doi.org/10.4039/tce.2023.27 DOI: https://doi.org/10.4039/tce.2023.27
  8. Archibald, S.B., Rasnitsyn, A.P., Brothers, D.J. & Mathewes, R.W. (2018) Modernisation of the Hymenoptera: ants, bees, wasps,and sawflies of the early Eocene Okanagan Highlands of western North America. Canadian Entomologist, 150, 205–257. https://doi.org/10.4039/tce.2017.59 DOI: https://doi.org/10.4039/tce.2017.59
  9. Baca, S.M., Gustafson, G.T., Alexander, A.M., Gough, H.M. & Toussaint, E.F.A. (2021) Integrative phylogenomics reveals a Permian origin of Adephaga beetles. Systematic Entomology, 46 (4), 968–990. https://doi.org/10.1111/syen.12506 DOI: https://doi.org/10.1111/syen.12506
  10. Balke, M., Beigel, A. & Hendrich, L. (2010) Hydroporus carstengroehni sp. n. und zwei unbestimmte Hydroporinae aus dem baltischen Bernstein (Dytiscidae: Hydroporinae). Nachrichtenblatt der Bayerischen Entomologen, 59 (1/2), 2–9.
  11. Balke, M., Hájek, J. & Hendrich, L. (2017) Generic reclassification of species formerly included in Rhantus Dejean (Coleoptera, Dytiscidae, Colymbetinae). Zootaxa, 4258 (1), 91–100. https://doi.org/10.11646/zootaxa.4258.1.7 DOI: https://doi.org/10.11646/zootaxa.4258.1.7
  12. Balke, M. & Hendrich, L. (2019) †Japanolaccophilus beatificus sp. n. from Baltic amber and a key to the Laccophilinae genera of the World (Coleoptera: Laccophilinae). Zootaxa, 4567 (1), 176–182. https://doi.org/10.11646/zootaxa.4567.1.10 DOI: https://doi.org/10.11646/zootaxa.4567.1.10
  13. Bechly, G. & Rasmussen, J.A. (2019) A new genus of hawker dragonfly (Odonata: Anisoptera: Aeshnidae) from the Early Eocene Fur Formation of Denmark. Zootaxa, 4550 (1), 123–128. https://doi.org/10.11646/zootaxa.4550.1.6 DOI: https://doi.org/10.11646/zootaxa.4550.1.6
  14. Belokobylskij, S.A., Vasilenko, D.V. & Perkovsky, E.E. (2024) The first reliable fossil record of the tribe Centistini (Hymenoptera, Braconidae, Euphorinae): a new subgenus and species of braconid wasp in Danish amber. Journal of Hymenoptera Research, 97, 15–27. https://doi.org/10.3897/jhr.97.115789 DOI: https://doi.org/10.3897/jhr.97.115789
  15. Churcher, C.S., Pilny, J.J. & Morgan, A.V. (1990) Late Pleistocene vertebrate, plant and insect remains from the lnnerkip site, southwestern Ontario. Géographie Physique et Quaternaire, 44 (3), 299–308. https://doi.org/10.7202/032831ar DOI: https://doi.org/10.7202/032831ar
  16. Culler, L.E., Ohba, S. & Crumrine, P. (2014) Predator-prey interactions of dytiscids. In: Yee, D.A. (Ed.), Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae). Springer, Dordrecht, pp. 363–386. https://doi.org/10.1007/978-94-017-9109-0_8 DOI: https://doi.org/10.1007/978-94-017-9109-0_8
  17. Deding, J. (1988) Gut content analysis of diving beetles (Coleoptera: Dytiscidae). Natura Jutlandica, 22 (10), 177–184.
  18. Desamoré, A., Laenen, B., Miller, K.B. & Bergsten, J. (2018) Early burst in body size evolution is uncoupled from species diversification in diving beetles (Dytiscidae). Molecular Ecology, 27, 979–993. https://doi.org/10.1111/mec.14492 DOI: https://doi.org/10.1111/mec.14492
  19. Dietrich, C.H. & Perkovsky, E.E. (2023) First leafhopper from the early Eocene Fur Formation of Denmark representing a new genus of Cicadellinae (Hemiptera: Cicadomorpha). Palaeoentomology, 6 (5), 447–450. https://doi.org/10.11646/palaeoentomology.6.5.2 DOI: https://doi.org/10.11646/palaeoentomology.6.5.2
  20. Dlussky, G.M. & Rasnitsyn, A.P. (2009) Ants (Insecta: Vespida: Formicidae) in the Upper Eocene amber of Central and Eastern Europe. Paleontological Journal, 43 (9), 1024–1042. https://doi.org/10.1134/S0031030109090056 DOI: https://doi.org/10.1134/S0031030109090056
  21. Forster, J.R. (1771) Novae species Insectorum. Centuria I. Nam mihi contuenti se persuasit rerum natura, nihil incredible existimare de ea. T. Davies & B. White, Londini, viii + 100 pp. https://doi.org/10.5962/bhl.title.152194 DOI: https://doi.org/10.5962/bhl.title.152194
  22. Galewski, K. (1971) A study of morphobiotic adaptations of European species of the Dytiscidae (Coleoptera). Polskie Pismo Entomologiczne, 41, 487–702.
  23. Gómez, R.A. & Damgaard, A.L. (2014) A rare diving beetle from Baltic amber: Hydrotrupes prometheus new species reveals former widespread distribution of the genus (Coleoptera, Dytiscidae). Journal of Paleontology, 88 (4), 814–822. https://doi.org/10.1666/13-017 DOI: https://doi.org/10.1666/13-017
  24. Gumovsky, A., Perkovsky, E. & Rasnitsyn, A. (2018) Laurasian ancestors and “Gondwanan” descendants of Rotoitidae (Hymenoptera: Chalcidoidea): what a review of Late Cretaceous Baeomorpha revealed. Cretaceous Research, 84, 286–322. https://doi.org/10.1016/j.cretres.2017.10.027 DOI: https://doi.org/10.1016/j.cretres.2017.10.027
  25. Hájek, J. (2009) Icones Insectorum Europae Centralis. Coleoptera: Dytiscidae. Folia Heyrovskyana, Series B, 13, 1–32.
  26. Hayashi, M. (1998) Early Pleistocene ground beetles (Coleoptera: Carabidae) from the Ookui Formation in Nagano Prefecture, Central Japan, and their biogeographical and paleoenvironmental significance. The Quaternary Research, 37, 117–129. https://doi.org/10.4116/jaqua.37.117 DOI: https://doi.org/10.4116/jaqua.37.117
  27. Hendrich, L. & Balke, M. (2020) A Baltic amber species of the diving beetle genus Coptotomus Say, 1830 (Coleoptera: Dytiscidae: Coptotominae). Zootaxa, 4895 (2), 285–290. https://doi.org/10.11646/zootaxa.4895.2.7 DOI: https://doi.org/10.11646/zootaxa.4895.2.7
  28. Jałoszyński, P. & Perkovsky, E.E. (2016) The extant genus Eutheia (Coleoptera: Staphylinidae: Scydmaeninae) discovered in Upper Cretaceous Taimyr amber. Cretaceous Research, 66, 6–10. https://doi.org/10.1016/j.cretres.2016.05.005 DOI: https://doi.org/10.1016/j.cretres.2016.05.005
  29. Jenkins Shaw, J, Nielsen, C. & Perkovsky, E.E. (2024a) A pinophiline rove beetle (Coleoptera: Staphylinidae: Paederinae) from the early Eocene Fur Formation, Denmark. Entomologiske Meddelelser, 90 (1), 61–70.
  30. Jenkins Shaw, J., Perkovsky, E.E., Ślipiński, A., Escalona, H. & Solodovnikov, A. (2023) An extralimital fossil of the genus Diagrypnodes (Coleoptera: Salpingidae: Inopeplinae). Historical Biology, 1–8. [published online] https://doi.org/10.1080/08912963.2023.2206858 DOI: https://doi.org/10.1080/08912963.2023.2206858
  31. Jenkins Shaw, J., Solodovnikov, A. & Perkovsky, E.E. (2024b) Discovery of the rove beetle subfamily Trichophyinae (Coleoptera: Staphylinidae) in Late Cretaceous Taimyr amber. Cretaceous Research, 154, 105741. https://doi.org/10.1016/j.cretres.2023.105741 DOI: https://doi.org/10.1016/j.cretres.2023.105741
  32. Kehl, S., & Dettner, K. (2007) Flugfähigkeit der in Deutschland vorkommenden adephagen Wasserkäfer (Coleoptera, Hydradephaga). Entomologie Heute, 19, 141–161.
  33. Kirichenko-Babko, M. & Perkovsky, E.E. (2023) The first neotropical ground beetle (Coleoptera, Carabidae) from the Eocene of Ukraine: finding the first Old World ant nest beetle related to Eohomopterus in the Rovno amber. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 114 (1–2), 115–124. https://doi.org/10.1017/S1755691023000105 DOI: https://doi.org/10.1017/S1755691023000105
  34. Kögel, F. (1987) Zur Biologie und Ӧkologie von Rhantus consputus (Col., Dytiscidae). Entomologische Arbeiten aus dem Museum G. Frey Tutzing bei München, 35/36, 5–19.
  35. Krzemiński, W. (2001) New fossil Tipuloidea (Diptera) from the Fur Formation of Denmark in the collection of the Natural History Museum in London. Polish Journal of Entomology, 70, 333–339.
  36. Kuzmina, S. (2023) Wetlands in the Pleistocene Steppe-Tundra landscapes of Beringia, their insects, and the role of aeolian sedimentation. Water, 15 (494), 1–33. https://doi.org/10.3390/w15030494 DOI: https://doi.org/10.3390/w15030494
  37. Larsson, S.G. (1975) Palaeobiology and the mode of burial of the insects of the lower Mo-clay of Denmark. Bulletin of the Geological Society of Denmark, 24, 193–209.
  38. Legalov, A.A., Vasilenko, D.V. & Perkovsky, E.E. (2024) A new species of the genus Cephalallus Sharp, 1905 (Coleoptera: Cerambycidae) from the Ypresian of Denmark. Ecologica Montenegrina, 71, 261–268. https://doi.org/10.37828/em.2024.71.28 DOI: https://doi.org/10.37828/em.2024.71.28
  39. Łomnicki, A.M. (1894) Pleistocenskie owady z Borysławia. (Fauna Pleistocenica Insectorum Boryslaviensium). Wydawnictwa Muzeum Imienia Dzieduszyckich, 4, 1–116. [in Polish]
  40. Makarkin, V.N. & Perkovsky, E.E. (2023) New Limaiinae (Neuroptera: Chrysopidae) from the early Eocene Fur Formation, Denmark, including an unexpected finding of a Mesozoic genus. Zootaxa, 5383 (1), 57–66. https://doi.org/10.11646/zootaxa.5383.1.4 DOI: https://doi.org/10.11646/zootaxa.5383.1.4
  41. Meier, N., Wacker, A. & Klopfstein, S. (2022) New fossil wasp species from the earliest Eocene Fur Formation has its closest relatives in late Eocene ambers (Hymenoptera, Ichneumonidae, Pherhombinae). Bulletin of the Society of Systematic Biologists, 1 (1), 8427, 1–17. https://doi.org/10.18061/bssb.v1i1.8427 DOI: https://doi.org/10.18061/bssb.v1i1.8427
  42. Miller, K.B. & Balke, M. (2003) The unusual occurrence of aquatic beetles in amber, Copelatus aphroditae Balke, n. sp. and C. predaveterus Miller, n. sp., (Coleoptera: Dytiscidae: Copelatinae). Proceedings of the Entomological Society of Washington, 105 (4), 809–815.
  43. Miller, K.B. & Bergsten, J. (2016) Diving beetles of the World. Systematics and biology of Dytiscidae. John Hopkins University Press, Baltimore, Maryland, 320 pp.
  44. Morinière, J., Van Dam, M.H., Hawlitschek, O., Bergsten, J., Michat, M.C., Hendrich, L., Ribera, I., Toussaint, E.F.A. & Balke, M. (2016) Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods. Scientific Reports, 6, 26340. https://doi.org/10.1038/srep26340 DOI: https://doi.org/10.1038/srep26340
  45. Nilsson, A.N. & Hájek, J. (2024) A World Catalogue of the family Dytiscidae, or the diving beetles (Coleoptera, Adephaga). Version 1 January 2024. Distributed as a PDF file via Internet. Available from: http://www.waterbeetles.eu (accessed 20 January 2024)
  46. Nilsson, A.N. & Holmen, M. (1995) The aquatic Adephaga (Coleoptera) of Fennoscandia and Denmark. II. Dytiscidae. Fauna Entomologica Scandinavica, 32, 1–192. https://doi.org/10.1163/9789004273603_001 DOI: https://doi.org/10.1163/9789004273603_001
  47. Pedersen, G.K., Pedersen, S.A.S., Bonde, N., Heilmann-Clausen, C., Larsen, L.M., Lindow, B., Madsen, H., Pedersen, A.K., Rust, J., Schultz, P.B., Storey, M. & Willumsen, P.S. (2012) Molerområdets geologi – sedimenter, fossiler, askelag og glacialtektonik. Geologisk Tidsskrift, 2011, 41–135.
  48. Pedersen, G.K. & Surlyk, F. (1983) The Fur Formation, a late Paleocene ash-bearing diatomite from northern Denmark. Bulletin of the Geological Society of Denmark, 32, 43–65. https://doi.org/10.37570/bgsd-1983-32-03 DOI: https://doi.org/10.37570/bgsd-1983-32-03
  49. Perkovsky, E.E. (2016) Tropical and Holarctic ants in Late Eocene ambers. Vestnik zoologii, 50 (2), 111–122. https://doi.org/10.1515/vzoo-2016-0014 DOI: https://doi.org/10.1515/vzoo-2016-0014
  50. Perkovsky, E.E. (2017) Comparison of biting midges of the Early Eocene Cambay amber (India) and Late Eocene European ambers supports the independent origin of European ambers. Vestnik Zoologii, 51 (6), 275–284. https://doi.org/10.1515/vzoo-2017-0033 DOI: https://doi.org/10.1515/vzoo-2017-0033
  51. Perkovsky, E.E. & Wegierek, P. (2018) Aphid–Buchnera–Ant symbiosis; or why are aphids rare in the tropics and very rare further south? Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 107 (2/3), 297–310. https://doi.org/10.1017/S1755691017000147 DOI: https://doi.org/10.1017/S1755691017000147
  52. Ponomarenko, A.G. & Prokin, A.A. (2015) Review of paleontological data on the evolution of aquatic beetles (Coleoptera). Paleontological Journal, 49 (13), 1383–1412. https://doi.org/10.1134/S0031030115130080 DOI: https://doi.org/10.1134/S0031030115130080
  53. Prebble, M., Whitau, R., Meyer, J.-Y., Sibley-Punnett, L., Fallon, S. & Porch, N. (2016) Abrupt late Pleistocene ecological and climate change on Tahiti (French Polynesia). Journal of Biogeography, 43, 2438–2453. https://doi.org/10.1111/jbi.12807 DOI: https://doi.org/10.1111/jbi.12807
  54. Prokin, A.A., Petrov, P.N., Wang, B. & Ponomarenko, A.G. (2013) New fossil taxa and notes on the Mesozoic evolution of Liadytidae and Dytiscidae (Coleoptera). Zootaxa, 3666 (2), 137–159. https://doi.org/10.11646/zootaxa.3666.2.2 DOI: https://doi.org/10.11646/zootaxa.3666.2.2
  55. Radchenko, A.G. & Perkovsky, E.E. (2021) Wheeler’s dilemma revisited: first Oecophylla-Lasius syninclusion and other ants syninclusions in the Bitterfeld amber (late Eocene). Invertebrate Zoology, 18 (1), 47–65. https://doi.org/10.15298/invertzool.18.1.05 DOI: https://doi.org/10.15298/invertzool.18.1.05
  56. Rasmussen, J.A., Madsen, H., Schultz, B.P., Sylvestersen, R.L. & Bonde, N. (2016) The lowermost Eocene deposits and biota of the western Limjord region, Denmark – Field Trip Guidebook. In: 2nd International Mo-clay Meeting, 2–4 November 2016, Museum, Skive and Fossil and Mo-clay Museum. Museum Mors, Nykøbing Mors, 35 pp.
  57. Rust, J. (1998) Biostratinomie von Insekten aus der Fur-Formation von Dänemark (Moler, oberes Paleozän/unteres Eozän). Paläontologische Zeitschrift, 72, 41–58. https://doi.org/10.1007/BF02987814 DOI: https://doi.org/10.1007/BF02987814
  58. Rust, J. (1999) Biologie der Insekten aus dem ältesten Tertiär Nordeuropas. Habilitationsschrift zur Erlangung der venia legendi für das Fach Zoologie in der biologischen Fakultät der Georg-August-Universität Göttingen, Göttingen, 482 pp., 34 pls.
  59. Schultz, B.P., Vickers, M.L., Huggett, J., Madsen, H., Heilmann-Clausen, C., Friis, H. & Suess, E. (2020) Palaeogene glendonites from Denmark. Bulletin of the Geological Society of Denmark, 68, 23–35. https://doi.org/10.37570/bgsd-2020-68-03-rev DOI: https://doi.org/10.37570/bgsd-2020-68-03
  60. Stokke, E.W., Jones, M.T., Tierney, J.E., Svensen, H.H. & Whiteside, J.H. (2020) Temperature changes across the Paleocene-Eocene thermal maximum – a new high-resolution TEX86 temperature record from the Eastern North Sea Basin. Earth and Planetary Science Letters, 544, 116388. https://doi.org/10.1016/j.epsl.2020.116388 DOI: https://doi.org/10.1016/j.epsl.2020.116388
  61. Vickers, M.L., Jones, M.T., Longman, J., Evans, D., Ullmann, C.V., Stokke, W., Vickers, M., Frieling, J., Dustin, T., Harper, D.T., Clementi, V.J. & the IODP expedition 396 scientists (2024) Paleocene–Eocene age glendonites from the Mid-Norwegian Margin – indicators of cold snaps in the hothouse? Climates of the Past, 20, 1–23. https://doi.org/10.5194/cp-20-1-2024 DOI: https://doi.org/10.5194/cp-20-1-2024
  62. Vickers, M.L., Lengger, S.K., Bernasconi, S.M., Thibault, N., Schultz, B.P., Fernandez, A., Ullmann, C.V., McCormack, P., Bjerrum, C.J., Rasmussen, J.A. & Hougård, I.W. (2020) Cold spells in the Nordic Seas during the early Eocene Greenhouse. Nature Communications, 11, 4713. https://doi.org/10.1038/s41467-020-18558-7 DOI: https://doi.org/10.1038/s41467-020-18558-7
  63. Waichert, C., Rodriguez, J., Rapoza, M. & Wappler, T. (2021) The oldest species of Pompilidae to date, a new fossil spider wasp (Hymenoptera: Pompilidae). Historical Biology, 33 (7), 1008–1111. https://doi.org/10.1080/08912963.2019.1675056 DOI: https://doi.org/10.1080/08912963.2019.1675056
  64. Willmann, R. (1990) Insekten aus der Fur-Formation von Dänemark (Moler, ob. Paleozän / unt. Eozän?). 1. Allgemeines. Meyniana, 42, 1–14.
  65. Willumsen, P.S. (2004) Palynology of the Lower Eocene deposits of northwest Jutland, Denmark. Bulletin of the Geological Society of Denmark, 52, 141–157. https://doi.org/10.37570/bgsd-2004-51-10 DOI: https://doi.org/10.37570/bgsd-2004-51-10