Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-06-25
Page range: 1-20
Abstract views: 18
PDF downloaded: 0

A new species in the Cyrtodactylus intermedius (Squamata: Gekkonidae) group from an isolated limestone karst formation in southwestern Cambodia

Ministry of Environment; Morodok Techo Building (Lot 503); Tonle Bassac; Chamkarmorn; Phnom Penh; Cambodia
Wild Earth Allies; 77a; Street Beton; Bayap Village; Sangkat Phnom Penh Thmei; Khan Sen Sok; Phnom Penh; Cambodia
Ministry of Environment; Morodok Techo Building (Lot 503); Tonle Bassac; Chamkarmorn; Phnom Penh; Cambodia
Ministry of Environment; Morodok Techo Building (Lot 503); Tonle Bassac; Chamkarmorn; Phnom Penh; Cambodia
Ministry of Environment; Morodok Techo Building (Lot 503); Tonle Bassac; Chamkarmorn; Phnom Penh; Cambodia
Ministry of Environment; Morodok Techo Building (Lot 503); Tonle Bassac; Chamkarmorn; Phnom Penh; Cambodia
Wild Earth Allies; 77a; Street Beton; Bayap Village; Sangkat Phnom Penh Thmei; Khan Sen Sok; Phnom Penh; Cambodia
Graduate School; National University of Cheasim Kamchaymear; No. 157; Preah Norodom Blvd; Khan Chamkarmorn; Phnom Penh 12300; Cambodia
Fauna & Flora International; Cambodia Program; # 19; St. 360; Sangkat BKKI; Chamkarmorn; Phnom Penh; Cambodia
Centre for Biodiversity Conservation; Room 415; Faculty of Science; Royal University of Phnom Penh; Confederation of Russian Boulevard; Phnom Penh; Cambodia
Department of Environment; Kampot Province; St. 729. 1 Ousaphea village; Sangkat Kampongkandal; Krong Kampot; Kampot Province
North Carolina Museum of Natural Sciences; 11 West Jones St; Raleigh; NC 27601 USA
Herpetology Laboratory; Department of Biology; La Sierra University; 4500 Riverwalk Parkway; Riverside; California 92505 USA; Department of Herpetology; San Diego Natural History Museum; P.O. Box 121390; San Diego; California 92112 USA; Institute for Tropical Biology and Conservation; Universiti Malaysia Sabah; Jalan UMS; 88400; Kota Kinabalu; Sabah; Malaysia
Reptilia Karst site-specific endemism molecular systematics taxonomy Touk Meas Indochina

Abstract

The gekkonid lizard Cyrtodactylus intermedius was formerly considered to be a single widespread species in hilly areas across eastern Thailand through southern Vietnam but has recently been partitioned into a complex of 12 nominal species across its range. A population belonging to the C. intermedius group was recently found in an isolated limestone karst block in Kampot Province in southwestern Cambodia, part of which lies within the recently designated Phnom Preah Kuhear Loung Natural Heritage Site. Comparisons of morphometric, meristic, qualitative morphological and color pattern data, as well as a molecular analysis using the mitochondrial ND2 gene, revealed that this population differs from all other named members of the C. intermedius group, and so is described here as a new species. The karst-dwelling C. regicavernicolus sp. nov. was recovered as the sister species to C. laangensis, the most geographically proximate member of the complex and one that is also restricted to a small limestone karst habitat.

 

References

  1. Barraclough, T.G., Birky, C.W. Jr. & Burt, A. (2003) Diversification in sexual and asexual organisms. Evolution, 57, 2166–2172. https://doi.org/10.1554/02–339
  2. Bobrov, V.V. (1992) Notes on lizards (Reptilia, Sauria) from southern Vietnam. Journal of Bengal Natural History Society, New Series, 2 (1), 17–24.
  3. Chan, K.O. & Grismer, L.L. (2022) GroupStruct: An R package for allometric size correction. Zootaxa, 5124 (4), 471–482. https://doi.org/10.11646/zootaxa.5124.4.4
  4. Clements, R., Sodhi, N.S., Schilthuizen, M. & Ng, P.K.L. (2006) Limestone karsts of Southeast Asia: Imperiled arks of biodiversity. BioScience, 56 (9), 733–742. https://doi.org/10.1641/0006-3568(2006)56[733:LKOSAI]2.0.CO;2
  5. de Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology. 56, 879–886. https://doi.org/10.1080/10635150701701083
  6. Edler, D., Klein, J., Antonelli, A. & Silvestro, D. (2021) raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution, 12, 373–377. https://doi.org/10.1111/2041-210X.13512
  7. Ellis, M. & Pauwels, O.S.G. (2012) The bent-toed geckos (Cyrtodactylus) of the caves and karst of Thailand. Cave and Karst Science, 39(1), 16–22.
  8. Frost, D.R. & Hillis, D.M. (1990) Species in concept and practice: herpeto­logical application. Herpetologica, 46, 87–104.
  9. Frost, D.R. & Kluge, A.G. (1994) A consideration of the epistemology in systematic biology, with special reference to species. Cladistics, 10, 259–294. https://doi.org/10.1111/j.1096-0031.1994.tb00178.x
  10. Gillieson, D. (2005) Karst in Southeast Asia. In: Gupta, A. (Ed.), The Physical Geography of Southeast Asia. Oxford University Press, Oxford, pp. 157–176. https://doi.org/10.1093/oso/9780199248025.003.0021
  11. Grismer, L.L., Chan, K.O., Oaks, J.R., Neang, T., Sokun, L., Murdoch, M.L., Stuart, B.L. & Grismer, J.L. (2020a) A new insular species of the Cyrtodactylus intermedius (Squamata: Gekkonidae) group from Cambodia with a discussion of habitat preference and ecomorphology. Zootaxa, 4830 (1), 75–102. https://doi.org/10.11646/zootaxa.4830.1.3
  12. Grismer, L.L., Geissler, P., Neang, T., Hartmann, T., Wagner, P. & Poyarkov, N.A. (2021a) Molecular phylogenetics, PCA, and MFA recover a new species of Cyrtodactylus (Squamata: Gekkonidae) from an isolated sandstone massif in northwestern Cambodia. Zootaxa, 4949 (2), 261–288. https://doi.org/10.11646/zootaxa.4949.2.3
  13. Grismer, L.L. & Grismer, J.L. (2017) A re-evaluation of the phylogenetic relationships of the Cyrtodactylus condorensis group (Squamata; Gekkonidae) and a suggested protocol for the characterization of rock-dwelling ecomorphology in Cyrtodactylus. Zootaxa, 4300 (4), 486–504. https://doi.org/10.11646/zootaxa.4300.4.2
  14. Grismer, L.L., Neang, T., Chav, T. & Grismer, J.L. (2008) Checklist of the amphibians and reptiles of the Cardamom region of southwestern Cambodia. Cambodian Journal of Natural History, 2008 (1), 12–28.
  15. Grismer, L.L., Pawangkhanant, P., Idiiatullina, S.S., Trofimets, A.V., Nazarov, R.A., Suwannpoom, C. & Poyarkov, N.A. (2023) A new species of Cyrtodactylus Gray, 1827 (Squamata: Gekkonidae) from the Thai-Malay Peninsula and the independent evolution of cave ecomorphology on opposite sides of the Gulf of Thailand. Zootaxa, 5352 (1), 109–136. https://doi.org/10.11646/zootaxa.5352.1.4
  16. Grismer, L.L., Rujirawan, A., Yodthong, S., Stuart, B.L., Le, M.D., Le, D.T., Chuaynkern, Y., Wood, P.L. Jr. & Aowphol, A. (2022) The taxon­omy and phylogeny of the Cyrtodactylus brevipalmatus group (Squamata: Gekkonidae) with emphasis on C. interdigitalis and C. ngati. Vertebrate Zoology, 72, 245–269. https://doi.org/10.3897/vz.72.e80615
  17. Grismer, L.L., Wood, P.L. Jr., Anuar, S., Grismer, M.S., Quah, E.S.H., Murdoch, M.L., Muin, M.A., Davis, H.R., Aguilar, C., Klabacka, R., Cobos, A.J., Aowphol, A. & Sites, J.W. Jr. (2016) Two new Bent-toed Geckos of the Cyrtodactylus pulchellus complex from Peninsular Malaysia and multiple instances of convergent adaption to limestone karst ecosystems. Zootaxa, 4105 (5), 401–429. https://doi.org/10.11646/zootaxa.4105.5.1
  18. Grismer, L.L., Wood, P.L. Jr., Le, M.D., Quah, E.S.H. & Grismer, J.L. (2020b) Evolution of habitat preference in 243 species of Bent-toed geckos (genus Cyrtodactylus Gray, 1827) with a discussion of karst habitat conservation. Ecology and Evolution, 2020, 1–14. https://doi.org/10.1002/ece3.6961
  19. Grismer, L.L., Wood, P.L. Jr., Thura, M.K., Thaw, Z., Quah, E.S.H., Murdoch, M.L., Grismer, M.S., Lin, A., Kyaw, H. & Lwin, N. (2018) Twelve new species of Cyrtodactylus Gray (Squamata: Gekkonidae) from isolated limestone habitats in east-central and southern Myanmar demonstrate localized diversity and unprecedented microendemism. Zoological Journal of the Linnean Society, 182, 862–959. https://doi.org/10.1093/zoolinnean/zlx057
  20. Grismer, L.L., Wood, P.L. Jr., Poyarkov, N.A., Le, M.D., Karunarathna, S., Chomdej, S., Suwannapoom, C., Qi, S., Liu, S., Che, J., Quah, E.S.H., Kraus, F., Oliver ,P.M., Riyanto, A., Pauwels, O.S.G. & Grismer, J.L. (2021c) Karstic landscapes are foci of species diversity in the world’s third-largest vertebrate genus Cyrtodactylus Gray, 1827 (Reptilia: Squamata; Gekkonidae). Diversity, 13, 183. https://doi.org/10.3390/d13050183
  21. Grismer, L.L., Wood, P.L. Jr., Poyarkov, N.A., Le, M.D., Kraus, F., Agarwal, I., Oliver, P.M., Nguyen, S.N., Nguyen, T.Q., Karunarathna, S., Welton, L.J., Stuart, B.L., Luu, V.Q., Bauer, A.M., O’Connell, K.A., Quah, E.S.H., Chan, K.O., Ziegler, T., Ngo, H., Nazarov, R.A., Aowphol, A., Chomdej, S., Suwannapoom, C., Siler, C.D., Anuar, S., Ngo, V.T. & Grismer, J.L. (2021b) Phylogenetic partitioning of the third-largest vertebrate genus in the world, Cyrtodactylus Gray, 1827 (Reptilia; Squamata; Gekkonidae) and its relevance to taxonomy and conservation. Vertebrate Zoology, 71, 101–154. https://doi.org/10.3897/vertebrate-zoology.71.e59307
  22. Grismer, L.L., Wood, P.L. Jr., Ngo, V.T. & Murdoch, M.L. (2015) The systematics and independent evolution of cave ecomorphology in distantly related clades of Bent-toed Geckos (genus Cyrtodactylus Gray, 1827) from the Mekong Delta and islands in the Gulf of Thailand. Zootaxa, 3980 (1), 106–126. https://doi.org/10.11646/zootaxa.3980.1.6
  23. Hillis, D.M. (2019) Species delimitation in herpetology. Journal of Herpetology, 53, 3–12. https://doi.org/10.1670/18-123
  24. Huelsenbeck, J.P., Ronquist, F., Nielsen, R. & Bollback, J.P. (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294, 2310–2314. https://doi.org/10.1126/science.1065889
  25. Husson, F., Josse, J., Le, S. & Mazet, J. (2017) FactoMine R: exploratory data analysis and data mining. R package, Version 1.36.
  26. Kassambara, A. & Mundt, F. (2017) Factoextra: extract and visualize the result of multivariate data analyses. R package, Version 1.0.5.999.
  27. Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772–773. https://doi.org/10.1093/molbev/msw260
  28. Lleonart, J., Salat, J. & Torres, G.J. (2000) Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology, 205, 85–93. https://doi.org/10.1006/jtbi.2000.2043
  29. Luu, V.Q., Bonkowski, M., Nguyen, T.Q., Le, M.D., Schneider, N., Ngo, H.T. & Ziegler, T. (2016) Evolution in karst massifs: Cryptic diversity among bent-toed geckos along the Truong Son Range with descriptions of three new species and one new country record from Laos. Zootaxa, 4107 (2), 101–140. https://doi.org/10.11646/zootaxa.4107.2.1
  30. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE), 2010, 1–8. https://doi.org/10.1109/GCE.2010.5676129
  31. Murdoch, M.L., Grismer, L.L., Wood, P.L. Jr., Neang, T., Poyarkov, N.A., Ngo, V.T., Nazarov, R.A., Aowphol, A., Pauwels, O.S.G., Nguyen, H.N. & Grismer, J.L. (2019) Six new species of the Cyrtodactylus intermedius complex (Squamata: Gekkonidae) from the Cardamom Mountains and associated highlands of Southeast Asia. Zootaxa, 4554 (1), 1–62. https://doi.org/10.11646/zootaxa.4554.1.1
  32. Ngo, V.T., Grismer, L.L. & Grismer, J.L. (2008) A new endemic cave dwelling species of Cyrtodactylus Gray, 1827 (Squamata: Gekkonidae) fron the Kien Giang Biosphere Reserve, Southwestern Vietnam. Zootaxa, 1967 (1), 53–62. https://doi.org/10.11646/zootaxa.1967.1.3
  33. Ngo, V.T., Grismer, L.L. & Grismer, J.L. (2010) A new species of Cyrtodactylus Gray, 1827 (Squamata: Gekkonidae) in Phu Quoc National Park, Kien Giang Biosphere Reserve, southwestern Vietnam. Zootaxa, 2604 (1), 37–51. https://doi.org/10.11646/zootaxa.2604.1.3
  34. Nguyen, S.V., Ho, C.T. & Nguyen, T.Q. (2009) Herpetofauna of Vietnam. Edition Chimaira, Frankfurt am Main, 768 pp.
  35. Oksanen, J., Blanchet, .FG., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, .P, Stevens, M.H.H., Szoecs, E. & Wagner, H (2020) Package ‘vegan’. Version 2.5-7. Available from: https://cran.r-project.org/web/packages/vegan/ (accessed 13 May 2024)
  36. Pagès, J. (2015) Multiple Factor Analysis by Example Using R. CRC Press, New York, New York, 272 pp. https://doi.org/10.1201/b17700
  37. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904. https://doi.org/10.1093/sysbio/syy032
  38. Reist, J.D. (1986) An empirical evaluation of coefficients used in residual and allometric adjustment of size covariation. Canadian Journal of Zoology, 64, 1363–1368. https://doi.org/10.1139/z86-203
  39. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  40. Skalski, J.R., Richins, S.M. & Townsend, R.L. (2018) A statistical test and sample size recommendations for comparing community composition following PCA. PLoS ONE, 13, e0206033. https://doi.org/10.1371/journal.pone.0206033
  41. Smith, M.A. (1917) Descriptions of new reptiles and a new batrachian from Siam. Journal of the Natural History Society of Siam, 2, 221–225.
  42. Smith, M.A. (1935) The Fauna of British India, including Ceylon and Burma. Reptilia and Amphibia. Vol. II. Sauria. Taylor & Francis Ltd., London, xiii + 440 pp., 1 pl., 1 folding map.
  43. Stuart, B.L. & Emmett, D.A. (2006) A collection of amphibians and reptiles from the Cardamom Mountains, southwestern Cambodia. Fieldiana, Zoology, New Series, 109, 1–27. https://doi.org/10.3158/0015-0754(2006)109[1:ACOAAR]2.0.CO;2
  44. Thorpe, R.S. (1975) Quantitative handling of characters useful in snake systematics with particular reference to intraspecific variation in the Ringed Snake Natrix natrix (L.). Biological Journal of the Linnean Society, 7, 27–43. https://doi.org/10.1111/j.1095-8312.1975.tb00732.x
  45. Thorpe, R.S. (1983) A review of the numerical methods for recognising and analysing racial differentiation. In: Felsenstein, J. (Ed.), Numerical Taxonomy. NATO ASI Series. Vol. 1. Springer, Berlin and Heidelberg, pp. 404–423. https://doi.org/10.1007/978-3-642-69024-2_43
  46. Turan, C. (1999) A note on the examination of morphometric differentiation among fish populations: The truss system. Turkish Journal of Zoology, 23, 259–263.
  47. Wilcox, T., Zwickl, D.J., Heath, T.A. & Hillis, D.M. (2002) Phylogenetic relationships of the Dwarf Boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution, 25, 361–371. https://doi.org/10.1016/s1055-7903(02)00244-0