Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-07-10
Page range: 475-493
Abstract views: 88
PDF downloaded: 74

A taxonomic review of Sueus Murayama, 1951 ambrosia beetles (Coleoptera: Curculionidae: Scolytinae: Hyorrhynchini) aided by molecular phylogenetic analyses

Department of Entomology; Michigan State University; 288 Farm Lane; 243 Natural Science Bldg; East Lansing; MI 48824; USA
Department of Entomology; Michigan State University; 288 Farm Lane; 243 Natural Science Bldg; East Lansing; MI 48824; USA
Department of Entomology; Michigan State University; 288 Farm Lane; 243 Natural Science Bldg; East Lansing; MI 48824; USA
College of Plant Protection; Fujian Agriculture and Forestry University; Fuzhou 350002; China
Coleoptera Oriental region molecular systematics mitochondrial nuclear DNA

Abstract

Four Sueus Murayama, 1951 species occur in Southeast Asia and Oceania. They all likely have a female-biased haplodiploid inbreeding mating system and feed on symbiotic ambrosia fungi. These life history traits increase the potential of adventive events. Indeed, Sueus has been recently discovered on the Caribbean island of Martinique. Morphological variation has been observed among some populations of Sueus niisimai (Eggers, 1926), which questioned species boundaries. Given the beetle’s potential economic importance, we provide a molecular phylogeny as a foundation for systematic study and review the status of the known species. We sequenced a total of 1117 nucleotides from mitochondrial COI and nuclear CAD genes for 25 specimens. Parsimony and Bayesian phylogenies were similar in topology and demonstrated the sister placement of S. granulatus (Eggers, 1936) to the other Sueus species, reciprocal monophyly of S. niisimai and S. pilosus (Eggers, 1936) status restored, the monophyly of S. obesus Browne, 1977 and elevated levels of nucleotide divergence (interspecific = 16–22%). Sueus chatterjeei Smith & Cognato sp. nov. (India) and Sueus insulanus Schiffer, Smith & Cognato sp. nov. (Papua New Guinea) are described. Hyorrhynchus granulatus Eggers, 1936 is removed from synonymy with Hyorrhynchus lewisi Blandford, 1894 and reinstated as a valid species, Sueus granulatus (Eggers, 1936) status restored, comb. nov. A key to the eight recognized species is given. In addition, the identity of the Martinique species is revised as S. pilosus. Geographic distribution of species and the potential existence of cryptic species are discussed.

 

References

  1. Beaver, R.A. (1984) Biology of the ambrosia beetle. Sueus niisimai (Eggers) (Col. Scolytidae), in Fiji. Entomologist’s Monthly Magazine, 120, 99–102.
  2. Beaver, R.A. & Gebhardt, H. (2005) Notes on the tribe Hyorrhynchini (Col., Curculionidae, Scolytinae). Serangga, 9 (1–2), 91–102.
  3. Beaver, R.A. & Liu, L.-Y. (2010) An annotated synopsis of Taiwanese bark and ambrosia beetles, with new synonymy, new combinations and new records (Coleoptera: Curculionidae: Scolytinae). Zootaxa, 2602 (1), 1–47. https://doi.org/10.11646/zootaxa.2602.1.1
  4. Beaver, R.A., Sittichaya, W. & Liu, L.-Y. (2014) A synopsis of the scolytine ambrosia beetles of Thailand (Coleoptera: Curculionidae: Scolytinae). Zootaxa, 3875 (1), 1–82. https://doi.org/10.11646/zootaxa.3875.1.1
  5. Blandford, W.F.H. (1894) The rhynchophorous Coleoptera of Japan. Part III. Scolytidae. Transactions of the Entomological Society of London, 1894, 53–141.
  6. Bright, D.E. (1994) New records and new species of Scolytidae from Borneo (Coleoptera: Scolytidae). Koleopterologische Rundschau, 64, 257–274.
  7. Bright, D.E. (2021) A cataloog of Scolytidae (Coleoptera), Supplement 4 (2011-2019) with an Annotated Checklist of the World Fauna (Coleoptera: Curculionoidea: Scolytidae). Miscellaneous Publications, Contributions of the C.P. Gillette Museum of Arthropod Diversity, Department of Agricultural Biology, Colorado State University, 655 pp.
  8. Browne, F.G. (1977) Three new species of Scolytidae and Platypodidae (Coleoptera) from Malaysia. Oriental Insects, 11, 369–371. https://doi.org/10.1080/00305316.1977.10433817
  9. Cognato, A.I., Sari, G., Smith, S.M., Beaver, R.A., Li, Y., Hulcr, J., Jordal, B.H., Kajimura, H., Lin, C.-S., Pham, T.H., Singh, S. & Sittichaya, W. (2020) The essential role of taxonomic expertise in the creation of DNA databases for the identification and delimitation of Southeast Asian ambrosia beetle species (Curculionidae: Scolytinae: Xyleborini). Frontiers in Ecology and Evolution, 8, 27. https://doi.org/10.3389/fevo.2020.00027
  10. Danforth, B.N., Fang, J. & Sipes, S.D. (2006) Analysis of family level relationships in bees (Hymenoptera: Apiformes) using 28S and two previously unexplored nuclear genes: CAD and RNA polymerase II. Molecular Phylogenetics and Evolution, 39, 358–372. https://doi.org/10.1016/j.ympev.2005.09.022
  11. Eggers, H. (1926) Japanische Borkenkäfer, I. Entomologische Blätter, 22, 133–138 + 145–148.
  12. Eggers, H. (1936) Neue indomalayische Borkenkäfer (Ipidae) III Nachtrag. Tijdschrift voor Entomologie, 79, 77–91.
  13. Gohli, J., Selvarajah, T., Kirkendall, L.R. & Jordal, B.H. (2016) Globally distributed Xyleborus species reveal recurrent intercontinental dispersal in a landscape of ancient worldwide distributions. BMC Evolutionary Biology, 16, 37. https://doi.org/10.1186/s12862-016-0610-7
  14. Hey, J. (2006) On the failure of modern species concepts. Trends Ecology and Evolution, 21, 447–450. https://doi.org/10.1016/j.tree.2006.05.011
  15. Li, Y., Skelton, J., Adams, S., Hattori, Y., Smith, M.E. & Hulcr, J. (2020) The ambrosia beetle Sueus niisimai (Scolytinae: Hyorrhynchini) is associated with the canker disease fungus Diatrypella japonica (Xylariales). Plant Disease, 104 (12), 3143–3150. https://doi.org/10.1094/PDIS-03-20-0482-RE
  16. Murayama, J.J. (1950) Nouvelles espèces de Scolytides (Coléoptères) de l’île de Shikoku. Insecta Matsumurana, 17, 61–64.
  17. Murayama, J.J. (1951) New genus and species of Scolytidae (Coleoptera) from Ohshima and Shionomisaki, Wakayama prefecture. Bulletin of the Faculty of Agriculture, Yamaguti University, 2, 1–7.
  18. Ploetz, R.C., Hulcr, J., Wingfield, M.J. & de Beer, Z.W. (2013) Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Disease, 97 (7), 856 –872. https://doi.org/10.1094/PDIS-01-13-0056-FE
  19. Rabaglia, R.J., Cognato, A.I., Hoebeke, E.R., Johnson, C.W., LaBonte, J.R., Carter, M.E. & Vlach, J.J. (2019) Early detection and rapid response: a 10-year summary of the USDA Forest Service program of surveillance for non-native bark and ambrosia beetles. American Entomologist, 65 (1), 29–42. https://doi.org/10.1093/ae/tmz015
  20. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  21. Schedl, K.E. (1954) Fauna Indomalayensis, IV: 141. Beitrag zur Morphologie und Systematik der Scolytoidea. The Philippine Journal of Science, 83, 137–159.
  22. Schedl, K.E. (1962) Zur Synonymie der Borkenkäfer VI. Entomologische Blätter, 58, 201–211.
  23. Smith, S.M. & Cognato, A.I. (2014) A taxonomic monograph of Nearctic Scolytus Geoffroy (Coleoptera, Curculionidae, Scolytinae). ZooKeys, 450, 1–182. https://doi.org/10.3897/zookeys.450.7452
  24. Smith, S.M. & Cognato, A.I. (2022) New non-native pseudocryptic Cyclorhipidion species (Coleoptera: Curculionidae: Scolytinae: Xyleborini) found in the United States as revealed in a multigene phylogeny. Insect Systematics and Diversity, 6 (4), 1–16. https://doi.org/10.1093/isd/ixac014
  25. Smith, S.M., Beaver, R.A. & Cognato, A.I. (2020) A monograph of the Xyleborini (Coleoptera, Curculionidae, Scolytinae) of the Indochinese Peninsula (except Malaysia) and China. ZooKeys, 983, 1–442. https://doi.org/10.3897/zookeys.983.52630
  26. Smith, S.M., Touroult, J. & Cognato, A.I. (2022) The first report of Sueus niisimai (Eggers, 1923) (Coleoptera: Curculionidae: Scolytinae: Hyorrhynchini) from the Western Hemisphere, from the Caribbean Island of Martinique. The Coleopterists Bulletin, 76 (3), 364–366. https://doi.org/10.1649/0010-065X-76.3.364
  27. Swofford, D.L. (2002) PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.0b10. Sinauer Associates, Sunderland. [program]
  28. Urvois, T., Perrier, C., Roques, A., Sauné, L., Courtin, C., Kajimura, H., Hulcr, J., Cognato, A., Auger Rozenberg, M-A. & Kerdelhué, C. (2023) The worldwide invasion history of a pest ambrosia beetle inferred using population genomics. Molecular Ecology, 32, 4381–4400. https://doi.org/10.1111/mec.16993
  29. Wood, S.L. (1983) New synonymy and new species of American bark beetles (Coleoptera: Scolytidae), Part IX. Great Basin Naturalist, 43 (4), 647–659. https://doi.org/10.5962/bhl.part.4489
  30. Wood, S.L. (1992) Nomenclatural changes and new species in Platypodidae and Scolytidae (Coleoptera), Part II. Great Basin Naturalist, 52 (1), 78–88.
  31. Wood, S. L. & Bright, D.E. (1992) A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: taxonomic index. Great Basin Naturalist Memoirs, 13, 1–1533.
  32. Yeates, D.K., Seago, A., Nelson, L., Cameron, S.L., Joseph, L. & Trueman, J.W.H. (2011) Integrative taxonomy, or iterative taxonomy? Systematic Entomology, 36, 209–217. https://doi.org/10.1111/j.1365-3113.2010.00558.x