Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-08-30
Page range: 265-290
Abstract views: 4670
PDF downloaded: 1083

Akarotaxis gouldae, a new species of Antarctic dragonfish (Notothenioidei: Bathydraconidae) from the western Antarctic Peninsula

Virginia Institute of Marine Science; William & Mary; Gloucester Point; VA 23062; U.S.A.; Present address: Coonamessett Farm Foundation; 277 Hatchville Road; East Falmouth; MA 02536; U.S.A.
Institute of Neuroscience; University of Oregon; Eugene; OR 97403; U.S.A.
Virginia Institute of Marine Science; William & Mary; Gloucester Point; VA 23062; U.S.A.
Department of Evolution; Ecology; & Behavior; University of Illinois; Urbana-Champaign; IL 61801
Virginia Institute of Marine Science; William & Mary; Gloucester Point; VA 23062; U.S.A.
Virginia Institute of Marine Science; William & Mary; Gloucester Point; VA 23062; U.S.A.
Virginia Institute of Marine Science; William & Mary; Gloucester Point; VA 23062; U.S.A.
Pisces Bathydraco ninae cryonotothenioid Notothenioid Bellingshausen Sea Southern ocean krill fishing Antarctica

Abstract

Bathydraconidae (Notothenioidei) are a group of benthic fishes endemic to the Southern Ocean. Because of their recent evolutionary radiation and limited sampling efforts due to their occurrence in remote regions, their diversity is likely underestimated. Akarotaxis nudiceps, currently the only recognized member of its genus, is an especially poorly known bathydraconid. Although A. nudiceps has a circumpolar distribution on the Antarctic continental shelf, its deep habitat and rarity limit knowledge of its life history and biology. Using a combination of morphological and genetic analyses, we identified an undescribed species of this genus, herein named Akarotaxis gouldae sp. nov. (Banded Dragonfish). The separation of this species was initially identified from archived larval specimens, highlighting the importance of early life stage taxonomy and natural history collections. All currently known adult and larval A. gouldae sp. nov. specimens have been collected from a restricted ~400 km coastal section of the western Antarctic Peninsula, although this is possibly due to sampling bias. This region is targeted by the epipelagic Antarctic krill fishery, which could potentially capture larval fishes as bycatch. Due to the extremely low fecundity of A. gouldae sp. nov. and near-surface occurrence of larvae, we suggest the growing Antarctic krill fishery could negatively impact this species.

 

References

  1. Bandelt, H.J., Forster, P. & Röhl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16 (1), 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 DOI: https://doi.org/10.1093/oxfordjournals.molbev.a026036
  2. Barnes, D.K.A. & Hillenbrand, C.-D. (2010) Faunal evidence for a late quaternary trans-Antarctic seaway. Global Change Biology, 16 (12), 3297–3303. https://doi.org/10.1111/j.1365-2486.2010.02198.x DOI: https://doi.org/10.1111/j.1365-2486.2010.02198.x
  3. Barnes, D.K.A. & Kuklinski, P. (2010) Bryozoans of the Weddell Sea continental shelf, slope and abyss: did marine life colonize the Antarctic shelf from deep water, outlying islands or in situ refugia following glaciations? Journal of Biogeography, 37 (9), 1648–1656. https://doi.org/10.1111/j.1365-2699.2010.02320.x DOI: https://doi.org/10.1111/j.1365-2699.2010.02320.x
  4. Barrera-Oro, E.R. & Lagger, C. (2010) Egg-guarding behaviour in the Antarctic bathydraconid dragonfish Parachaenichthys charcoti. Polar Biology, 33, 1585–1587. https://doi.org/10.1007/s00300-010-0847-3 DOI: https://doi.org/10.1007/s00300-010-0847-3
  5. Beck, E.A., Healey, H.M., Small, C.M., Currey, M.C., Desvignes, T., Cresko, W.A. & Postlethwait, J.H. (2022) Advancing human disease research with fish evolutionary mutant models. Trends in Genetics, 38 (1), 22–44. https://doi.org/10.1016/j.tig.2021.07.002 DOI: https://doi.org/10.1016/j.tig.2021.07.002
  6. Bilyk, K.T., Zhuang, X., Murphy, K.R. & Cheng, C.-H.C. (2019) A tale of two genes: divergent evolutionary fate of haptoglobin and hemopexin in hemoglobinless Antarctic icefishes. Journal of Experimental Biology, 222 (6), jeb188573. https://doi.org/10.1242/jeb.188573 DOI: https://doi.org/10.1242/jeb.188573
  7. Bista, I., Wood, J.M.D., Desvignes, T., McCarthy, S.A., Matschiner, M., Ning, Z., Tracey, A., Torrance, J., Sims, Y., Chow, W., Smith, M., Oliver, K., Haggerty, L., Salzburger, W., Postlethwait, J.H., Howe, K., Clark, M.S., William Detrich, H., Christina Cheng, C.-H., Miska, E.A. & Durbin, R. (2023) Genomics of cold adaptations in the Antarctic notothenioid fish radiation. Nature Communications, 14, 3412. https://doi.org/10.1038/s41467-023-38567-6 DOI: https://doi.org/10.1038/s41467-023-38567-6
  8. Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., Maio, N.D., Matschiner, M., Mendes, F.K., Müller, N.F., Ogilvie, H.A., Plessis, L. du, Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M.A., Wu, C.-H., Xie, D., Zhang, C., Stadler, T. & Drummond, A.J. (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Computational Biology, 15 (4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650 DOI: https://doi.org/10.1371/journal.pcbi.1006650
  9. Brooks, C.M., Ainley, D.G., Jacquet, J., Chown, S.L., Pertierra, L.R., Francis, E., Rogers, A., Chavez-Molina, V., Teh, L. & Sumaila, U.R. (2022) Protect global values of the Southern Ocean ecosystem. Science, 378 (6619), 477–479. https://doi.org/10.1126/science.add9480 DOI: https://doi.org/10.1126/science.add9480
  10. Brooks, C.M., Crowder, L.B., Curran, L.M., Dunbar, R.B., Ainley, D.G., Dodds, K.J., Gjerde, K.M. & Sumaila, U.R. (2016) Science-based management in decline in the Southern Ocean. Science, 354 (6309), 185–187. https://doi.org/10.1126/science.aah4119 DOI: https://doi.org/10.1126/science.aah4119
  11. Cao, S., Li, Y., Miao, X., Zhang, R., Lin, L. & Li, H. (2022) DNA barcoding provides insights into Fish Diversity and Molecular Taxonomy of the Amundsen Sea. Conservation Genetics Resources, 14 (3), 281–289. https://doi.org/10.1007/s12686-022-01273-4 DOI: https://doi.org/10.1007/s12686-022-01273-4
  12. Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). (2017) Map of the CAMLR Convention Area. Last updated October 2017. Available from: www.ccamlr.org/node/86816 (accessed 1 December 2022)
  13. CCAMLR. (2018) Report of the thirty-seventh meeting of the Scientific Committee. Available from: https://meetings.ccamlr.org/en/ccamlr-xxxvii/38 (accessed 1 December 2022)
  14. CCAMLR. (2021) Krill fisheries. Last updated July 2021. Available from: https://www.ccamlr.org/en/fisheries/krill (accessed 1 December 2022)
  15. CCAMLR Secretariat (2015) Common fish by-catch species in CCAMLR krill fisheries. Last updated March 2015. Available from: https://www.ccamlr.org/en/document/science/common-fish-catch-species-ccamlr-krill-fisheries (accessed 1 December 2022)
  16. CCAMLR Secretariat (2022) Fishery Report 2021: Euphausia superba in Area 48. Available from: https://fishdocs.ccamlr.org/FishRep_48_KRI_2021.html (accessed 1 December 2022)
  17. Ceballos, S.G., Roesti, M., Matschiner, M., Fernández, D.A., Damerau, M., Hanel, R. & Salzburger, W. (2019) Phylogenomics of an extra-Antarctic notothenioid radiation reveals a previously unrecognized lineage and diffuse species boundaries. BMC Evolutionary Biology, 19, 1–14. https://doi.org/10.1186/s12862-019-1345-z DOI: https://doi.org/10.1186/s12862-019-1345-z
  18. Clarke, A. & Crame, J.A. (2010) Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Philosophical Transactions of the Royal Society B: Biological Sciences, 365 (1558), 3655–3666. https://doi.org/10.1098/rstb.2010.0270 DOI: https://doi.org/10.1098/rstb.2010.0270
  19. Collins, G.E., Hogg, I.D., Convey, P., Sancho, L.G., Cowan, D.A., Lyons, W.B., Adams, B.J., Wall, D.H. & Green, T.G.A. (2020) Genetic diversity of soil invertebrates corroborates timing estimates for past collapses of the West Antarctic Ice Sheet. Proceedings of the National Academy of Sciences, 117 (36), 22293–22302. https://doi.org/10.1073/pnas.2007925117 DOI: https://doi.org/10.1073/pnas.2007925117
  20. Corso, A.D., McDowell, J.R., Biesack, E.E., Muffelman, S.C. & Hilton, E.J. (2023) Larval stages of the Antarctic Dragonfish Akarotaxis nudiceps (Waite, 1916), with comments on the larvae of the morphologically similar species Prionodraco evansii Regan 1914 (Notothenioidei: Bathydraconidae). Journal of Fish Biology, 102 (2), 395–402. https://doi.org/10.1111/jfb.15267 DOI: https://doi.org/10.1111/jfb.15267
  21. Corso, A.D., Steinberg, D.K., Stammerjohn, S.E. & Hilton, E.J. (2022) Climate drives long-term change in Antarctic Silverfish along the western Antarctic Peninsula. Communications biology, 5 (1), 1–10. https://doi.org/10.1038/s42003-022-03042-3 DOI: https://doi.org/10.1038/s42003-022-03042-3
  22. Daane, J.M. & Detrich, H.W. (2022) Adaptations and Diversity of Antarctic Fishes: A Genomic Perspective. Annual Review of Animal Biosciences, 10, 39–62. https://doi.org/10.1146/annurev-animal-081221-064325 DOI: https://doi.org/10.1146/annurev-animal-081221-064325
  23. Dana, J.D. (1850) Synopsis generum crustaceorum ordinis “Schizopoda.” American Journal of Science and Arts, 9, 129–133.
  24. Darriba, D., Posada, D., Kozlov, A.M., Stamatakis, A., Morel, B. & Flouri, T. (2020) ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Molecular Biology and Evolution, 37 (1), 291–294. https://doi.org/10.1093/molbev/msz189 DOI: https://doi.org/10.1093/molbev/msz189
  25. Derome, N., Chen, W.-J., Dettaý̈, A., Bonillo, C. & Lecointre, G. (2002) Phylogeny of Antarctic dragonfishes (Bathydraconidae, Notothenioidei, Teleostei) and related families based on their anatomy and two mitochondrial genes. Molecular Phylogenetics and Evolution, 24 (1), 139–152. https://doi.org/10.1016/S1055-7903(02)00223-3 DOI: https://doi.org/10.1016/S1055-7903(02)00223-3
  26. Desvignes, T., Le François, N.R., Goetz, L.C., Smith, S.S., Shusdock, K.A., Parker, S.K., Postlethwait, J.H. & Detrich, H.W. (2019) Intergeneric hybrids inform reproductive isolating barriers in the Antarctic icefish radiation. Scientific Reports, 9 (1), 5989. https://doi.org/10.1038/s41598-019-42354-z DOI: https://doi.org/10.1038/s41598-019-42354-z
  27. Desvignes, T., Postlethwait, J.H. & Konstantinidis, P. (2020) Biogeography of the Antarctic dragonfishes Acanthodraco dewitti and Psilodraco breviceps with re-description of Acanthodraco dewitti larvae (Notothenioidei: Bathydraconidae). Polar Biology, 43 (5), 565–572. https://doi.org/10.1007/s00300-020-02661-y DOI: https://doi.org/10.1007/s00300-020-02661-y
  28. DeWitt, H.H. (1985) Reports on fishes of the university of southern California, Antarctic research program, 1962–1968. I: A review of the genus Bathydraco Gunther (Family Bathydraconidae). Cybium, 9, 295–314.
  29. DeWitt, H.H. & Hureau, J.C. (1980) Fishes collected during” Hero” cruise 72–2 in the Palmer Archipelago, Antarctic, with the description of two new general and three new species. Bulletin du Museum National d’Histoire Naturelle, 3, 775–820. https://doi.org/10.5962/p.283193 DOI: https://doi.org/10.5962/p.283193
  30. Dollo, L. (1900) Racovitzia glacialis, poisson abyssal nouveau, recueilli par cette expédition. Expédition Antarctique Belge. Communication Préliminaire. Bulletins de l’Académie royale des sciences, des lettres et des beaux-arts de Belgique, 4, 316–327.
  31. Dollo, L. & Traquair, M.R.H. (1906) Bathydraco Scotiæ, Poisson abyssal nouveau recueilli par l’Expédition Antarctique Nationale Ecossaise. Proceedings of the Royal Society of Edinburgh, 26, 65–75. https://doi.org/10.1017/S0370164600024433 DOI: https://doi.org/10.1017/S0370164600024433
  32. Dornburg, A., Federman, S., Eytan, R.I. & Near, T.J. (2016) Cryptic species diversity in sub-Antarctic islands: A case study of Lepidonotothen. Molecular Phylogenetics and Evolution, 104, 32–43. https://doi.org/10.1016/j.ympev.2016.07.013 DOI: https://doi.org/10.1016/j.ympev.2016.07.013
  33. Dornburg, A., Federman, S., Lamb, A.D., Jones, C.D. & Near, T.J. (2017) Cradles and museums of Antarctic teleost biodiversity. Nature Ecology & Evolution, 1 (9), 1379–1384. https://doi.org/10.1038/s41559-017-0239-y DOI: https://doi.org/10.1038/s41559-017-0239-y
  34. Dorschel, B., Hehemann, L., Viquerat, S., Warnke, F., Dreutter, S., Tenberge, Y.S., Accettella, D., An, L., Barrios, F., Bazhenova, E., Black, J., Bohoyo, F., Davey, C., De Santis, L., Dotti, C.E., Fremand, A.C., Fretwell, P.T., Gales, J.A., Gao, J., Gasperini, L., Greenbaum, J.S., Jencks, J.H., Hogan, K., Hong, J.K., Jakobsson, M., Jensen, L., Kool, J., Larin, S., Larter, R.D., Leitchenkov, G., Loubrieu, B., Mackay, K., Mayer, L., Millan, R., Morlighem, M., Navidad, F., Nitsche, F.O., Nogi, Y., Pertuisot, C., Post, A.L., Pritchard, H.D., Purser, A., Rebesco, M., Rignot, E., Roberts, J.L., Rovere, M., Ryzhov, I., Sauli, C., Schmitt, T., Silvano, A., Smith, J., Snaith, H., Tate, A.J., Tinto, K., Vandenbossche, P., Weatherall, P., Wintersteller, P., Yang, C., Zhang, T. & Arndt, J.E. (2022) The International Bathymetric Chart of the Southern Ocean Version 2. Scientific Data, 9 (1), 275. https://doi.org/10.1038/s41597-022-01366-7 DOI: https://doi.org/10.1038/s41597-022-01366-7
  35. Ducklow, H., Cimino, M., Dunton, K.H., Fraser, W.R., Hopcroft, R.R., Ji, R., Miller, A.J., Ohman, M.D. & Sosik, H.M. (2022) Marine pelagic ecosystem responses to climate variability and change. BioScience, 72 (9), 827–850. https://doi.org/10.1093/biosci/biac050 DOI: https://doi.org/10.1093/biosci/biac050
  36. Duhamel, G., Hulley, P.-A., Causse, R., Koubbi, P., Vacchi, M., Pruvost, P., Vigetta, S., Irisson, J.O., Mormède, S. & Belchier, M., Dettai, A., Detrich, H.W., Gutt, J., Jones, C.D., Kock, K.H., Lopez Abellan, L.J. & Van de Putte, A.P. (2014) Chapter 7. Biogeographic Patterns of Fish. In: De Broyer, C., Koubbi, P., Griffiths, H.J., Raymond, B., d’Udekem d’Acoz, C., Van de Putte, A., Danis, B., David, B., Grant, S., Gutt, J., Held, C., Hosie, G., Huettmann, F., Post, A. & Ropert-Coudert, Y. (Eds.), Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp. 328–362.
  37. Eastman, J.T. (2017) Bathymetric distributions of notothenioid fishes. Polar Biology, 40 (10), 2077–2095. https://doi.org/10.1007/s00300-017-2128-x DOI: https://doi.org/10.1007/s00300-017-2128-x
  38. Eastman, J.T. & Eakin, R.R. (2021) Checklist of the species of notothenioid fishes. Antarctic Science, 33 (3), 273–280. https://doi.org/10.1017/S0954102020000632 DOI: https://doi.org/10.1017/S0954102020000632
  39. Eastman, J.T. & McCune, A.R. (2000) Fishes on the Antarctic continental shelf: evolution of a marine species flock? Journal of Fish Biology, 57, 84–102. https://doi.org/10.1111/j.1095-8649.2000.tb02246.x DOI: https://doi.org/10.1111/j.1095-8649.2000.tb02246.x
  40. Edler, D., Klein, J., Antonelli, A. & Silvestro, D. (2021) raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution, 12 (2), 373–377. https://doi.org/10.1111/2041-210X.13512 DOI: https://doi.org/10.1111/2041-210X.13512
  41. Ekau, W. (1990) Demersal fish fauna of the Weddell Sea, Antarctica. Antarctic Science, 2 (2), 129–137. https://doi.org/10.1017/S0954102090000165 DOI: https://doi.org/10.1017/S0954102090000165
  42. Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I.N., Hodell, D. & Piotrowski, A.M. (2012) Evolution of Ocean Temperature and Ice Volume Through the Mid-Pleistocene Climate Transition. Science, 337 (6095), 704–709. https://doi.org/10.1126/science.1221294 DOI: https://doi.org/10.1126/science.1221294
  43. Evans, C.W., Cziko, P., Cheng, C.-H.C. & Devries, A.L. (2005) Spawning behaviour and early development in the naked dragonfish Gymnodraco acuticeps. Antarctic Science, 17 (3), 319–327. https://doi.org/10.1017/S0954102005002749 DOI: https://doi.org/10.1017/S0954102005002749
  44. Excoffier, L. & Lischer, H.E.L. (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10 (3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x DOI: https://doi.org/10.1111/j.1755-0998.2010.02847.x
  45. Falco, R., Appiah-Madson, H.J. & Distel, D.L. (2022) The Ocean Genome Legacy: A Genomic Resource Repository for Marine Life. Biopreservation and Biobanking, 20, 104–106. https://doi.org/10.1089/bio.2021.0148 DOI: https://doi.org/10.1089/bio.2021.0148
  46. Fischer, J.G. (1885) Über Fische von Süd-Georgien. Ichthyologische und herpetologische Bemerkungen. Jahrbuch der Hamburgischen Wissenschaftlichen Anstalten, 2, 49–65.
  47. Gon, O. & Heemstra, P.C. (1990) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, 462 pp. https://doi.org/10.5962/bhl.title.141868 DOI: https://doi.org/10.5962/bhl.title.141868
  48. Günther, A. (1878) Preliminary notices of Deep-Sea Fishes collected during the Voyage of HMS “Challenger.” Journal of Natural History, 2 (7), 17–28. https://doi.org/10.1080/00222937808682376 DOI: https://doi.org/10.1080/00222937808682376
  49. Hewitt, G.M. (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359 (1442), 183–195. https://doi.org/10.1098/rstb.2003.1388 DOI: https://doi.org/10.1098/rstb.2003.1388
  50. Hilton, E.J., Watkins-Colwell, G.J. & Huber, S.K. (2021) The Expanding Role of Natural History Collections. Ichthyology & Herpetology, 109 (2), 379–391. https://doi.org/10.1643/t2020018 DOI: https://doi.org/10.1643/t2020018
  51. Ivanova, N.V., Zemlak, T.S., Hanner, R.H. & Hebert, P.D. (2007) Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7 (4), 544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x DOI: https://doi.org/10.1111/j.1471-8286.2007.01748.x
  52. Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20 (4), 1160–1166. https://doi.org/10.1093/bib/bbx108 DOI: https://doi.org/10.1093/bib/bbx108
  53. Kocher, T.D., Conroy, J.A., McKaye, K.R., Stauffer, J.R. & Lockwood, S.F. (1995) Evolution of NADH Dehydrogenase Subunit 2 in East African Cichlid Fish. Molecular Phylogenetics and Evolution, 4 (4), 420–432. https://doi.org/10.1006/mpev.1995.1039 DOI: https://doi.org/10.1006/mpev.1995.1039
  54. Kopf, R.K., Yen, J.D.L., Nimmo, D.G., Brosse, S. & Villéger, S. (2021) Global patterns and predictors of trophic position, body size and jaw size in fishes. Global Ecology and Biogeography, 30 (2), 414–428. https://doi.org/10.1111/geb.13227 DOI: https://doi.org/10.1111/geb.13227
  55. Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35 (21), 4453–4455. https://doi.org/10.1093/bioinformatics/btz305 DOI: https://doi.org/10.1093/bioinformatics/btz305
  56. Kuhn, K.L., Near, T.J., Detrich, H.W. & Eastman, J.T. (2011) Biology of the Antarctic dragonfish Vomeridens infuscipinnis (Notothenioidei: Bathydraconidae). Antarctic Science, 23 (1), 18–26. https://doi.org/10.1017/S095410201000060X DOI: https://doi.org/10.1017/S095410201000060X
  57. La Mesa, M., Calì, F., Donato, F., Riginella, E. & Mazzoldi, C. (2018) Aspects of the biology of the Antarctic dragonfish Gerlachea australis (Notothenioidei: Bathydraconidae) in the Weddell Sea, Antarctica. Polar Biology, 41, 793–803. https://doi.org/10.1007/s00300-017-2240-y DOI: https://doi.org/10.1007/s00300-017-2240-y
  58. La Mesa, M., Caputo, V. & Eastman, J.T. (2007a) Gametogenesis in the dragonfishes Akarotaxis nudiceps and Bathydraco marri (Pisces, Notothenioidei: Bathydraconidae) from the Ross Sea. Antarctic Science, 19 (1), 64–70. https://doi.org/10.1017/S0954102007000090 DOI: https://doi.org/10.1017/S0954102007000090
  59. La Mesa, M., Eastman, J.T. & Licandro, P. (2007b) Feeding habits of Bathydraco marri (Pisces, Notothenioidei, Bathydraconidae) from the Ross Sea, Antarctica. Polar Biology, 30, 541–547. https://doi.org/10.1007/s00300-006-0211-9 DOI: https://doi.org/10.1007/s00300-006-0211-9
  60. La Mesa, M., Eastman, J.T. & Vacchi, M. (2004) The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biology, 27, 321–338. https://doi.org/10.1007/s00300-004-0599-z DOI: https://doi.org/10.1007/s00300-004-0599-z
  61. La Mesa, M., Llompart, F., Riginella, E. & Eastman, J.T. (2021) Parental care and reproductive strategies in notothenioid fishes. Fish and Fisheries, 22 (2), 356–376. https://doi.org/10.1111/faf.12523 DOI: https://doi.org/10.1111/faf.12523
  62. La Mesa, M., Piepenburg, D., Pineda-Metz, S.E.A., Riginella, E. & Eastman, J.T. (2019) Spatial distribution and habitat preferences of demersal fish assemblages in the southeastern Weddell Sea (Southern Ocean). Polar Biology, 42, 1025–1040. https://doi.org/10.1007/s00300-019-02495-3 DOI: https://doi.org/10.1007/s00300-019-02495-3
  63. Lecointre, G., Améziane, N., Boisselier, M.-C., Bonillo, C., Busson, F., Causse, R., Chenuil, A., Couloux, A., Coutanceau, J.-P. & Cruaud, C. (2013) Is the species flock concept operational? The Antarctic shelf case. PloS one, 8 (8), e68787. https://doi.org/10.1371/journal.pone.0068787 DOI: https://doi.org/10.1371/journal.pone.0068787
  64. Leigh, J.W. & Bryant, D. (2015) popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6 (9), 1110–1116. https://doi.org/10.1111/2041-210X.12410 DOI: https://doi.org/10.1111/2041-210X.12410
  65. Li, H., Cao, S., Li, Y., Song, P., Zhang, R., Wang, R., Liu, S., Miao, X. & Lin, L. (2022) Molecular assessment of demersal fish diversity in Prydz Bay using DNA taxonomy. Deep Sea Research Part II: Topical Studies in Oceanography, 202, 105140. https://doi.org/10.1016/j.dsr2.2022.105140 DOI: https://doi.org/10.1016/j.dsr2.2022.105140
  66. Lönnberg, E. (1906) Contributions to the fauna of South Georgia. Almqvist & Wiksells, Uppsala, 104 pp.
  67. Marino, I. a. M., Benazzo, A., Agostini, C., Mezzavilla, M., Hoban, S.M., Patarnello, T., Zane, L. & Bertorelle, G. (2013) Evidence for past and present hybridization in three Antarctic icefish species provides new perspectives on an evolutionary radiation. Molecular Ecology, 22 (20), 5148–5161. https://doi.org/10.1111/mec.12458 DOI: https://doi.org/10.1111/mec.12458
  68. Marko, P.B., Hoffman, J.M., Emme, S.A., Mcgovern, T.M., Keever, C.C. & Nicole Cox, L. (2010) The “Expansion–Contraction” model of Pleistocene biogeography: rocky shores suffer a sea change? Molecular Ecology, 19 (1), 146–169. https://doi.org/10.1111/j.1365-294X.2009.04417.x DOI: https://doi.org/10.1111/j.1365-294X.2009.04417.x
  69. Matschiner, M., Hanel, R. & Salzburger, W. (2011) On the origin and trigger of the notothenioid adaptive radiation. PLoS one, 6 (4), e18911. https://doi.org/10.1371/journal.pone.0018911 DOI: https://doi.org/10.1371/journal.pone.0018911
  70. Maturana, C.S., Biersma, E.M., Díaz, A., González-Wevar, C., Contador, T., Convey, P., Jackson, J.A. & Poulin, E. (2022) Survivors and colonizers: Contrasting biogeographic histories reconciled in the Antarctic freshwater copepod Boeckella poppei. Frontiers in Ecology and Evolution, 10, 1012852. https://doi.org/10.3389/fevo.2022.1012852 DOI: https://doi.org/10.3389/fevo.2022.1012852
  71. La Mesa, M., Riginella, E. & Jones, C.D. (2017) Early life history traits and geographical distribution of Parachaenichthys charcoti. Antarctic Science, 29 (5), 410–416. https://doi.org/10.1017/S0954102017000189 DOI: https://doi.org/10.1017/S0954102017000189
  72. Meyer, B., Atkinson, A., Bernard, K.S., Brierley, A.S., Driscoll, R., Hill, S.L., Marschoff, E., Maschette, D., Perry, F.A., Reiss, C.S., Rombolá, E., Tarling, G.A., Thorpe, S.E., Trathan, P.N., Zhu, G. & Kawaguchi, S. (2020) Successful ecosystem-based management of Antarctic krill should address uncertainties in krill recruitment, behaviour and ecological adaptation. Communications Earth & Environment, 1 (1), 1–12. https://doi.org/10.1038/s43247-020-00026-1 DOI: https://doi.org/10.1038/s43247-020-00026-1
  73. Miller, R.G. (1993) History and atlas of the fishes of the Antarctic Ocean. Foresta Institute for Ocean and Mountain Studies, Carson City, 792 pp.
  74. Mintenbeck, K., Barrera-Oro, E.R., Brey, T., Jacob, U., Knust, R., Mark, F.C., Moreira, E., Strobel, A. & Arntz, W.E. (2012) Impact of climate change on fishes in complex Antarctic ecosystems. Advances in ecological research, 351–426. https://doi.org/10.1016/B978-0-12-396992-7.00006-X DOI: https://doi.org/10.1016/B978-0-12-396992-7.00006-X
  75. Münster, J., Kochmann, J., Grigat, J., Klimpel, S. & Kuhn, T. (2017) Parasite fauna of the Antarctic dragonfish Parachaenichthys charcoti (Perciformes: Bathydraconidae) and closely related Bathydraconidae from the Antarctic Peninsula, Southern Ocean. Parasites & Vectors, 10, 1–9. https://doi.org/10.1186/s13071-017-2176-7 DOI: https://doi.org/10.1186/s13071-017-2176-7
  76. Near, T.J., Dornburg, A., Kuhn, K.L., Eastman, J.T., Pennington, J.N., Patarnello, T., Zane, L., Fernández, D.A. & Jones, C.D. (2012) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proceedings of the National Academy of Sciences, 109 (9), 3434–3439. https://doi.org/10.1073/pnas.1115169109 DOI: https://doi.org/10.1073/pnas.1115169109
  77. Near, T.J., MacGuigan, D.J., Parker, E., Struthers, C.D., Jones, C.D. & Dornburg, A. (2018) Phylogenetic analysis of Antarctic notothenioids illuminates the utility of RADseq for resolving Cenozoic adaptive radiations. Molecular Phylogenetics and Evolution, 129, 268–279. https://doi.org/10.1016/j.ympev.2018.09.001 DOI: https://doi.org/10.1016/j.ympev.2018.09.001
  78. Nicol, S. & Foster, J. (2016) The Fishery for Antarctic Krill: Its Current Status and Management Regime. In: Siegel, V. (Ed.), Biology and Ecology of Antarctic Krill. Advances in Polar Ecology. Springer International Publishing, Cham, pp. 387–421. https://doi.org/10.1007/978-3-319-29279-3_11 DOI: https://doi.org/10.1007/978-3-319-29279-3_11
  79. Norman, J.R. (1937) LV.—Diagnoses of new Nototheniiform fishes collected by the “Discovery” Expedition. Annals and Magazine of Natural History, 20 (118), 475–476. https://doi.org/10.1080/00222933708655368 DOI: https://doi.org/10.1080/00222933708655368
  80. Novillo, M., Moreira, E., Macchi, G. & Barrera-Oro, E. (2018) Reproductive biology in the Antarctic bathydraconid dragonfish Parachaenichthys charcoti. Polar Biology, 41, 2239–2248. https://doi.org/10.1007/s00300-018-2359-5 DOI: https://doi.org/10.1007/s00300-018-2359-5
  81. Novillo, M., Moreira, E., Macchi, G. & Barrera-Oro, E. (2019) Reproductive effort in Chaenocephalus aceratus validated by gonadal histology: inshore sites serve as spawning grounds for some notothenioids. Polar Biology, 42, 1959–1972. https://doi.org/10.1007/s00300-019-02571-8 DOI: https://doi.org/10.1007/s00300-019-02571-8
  82. Nybelin, O. (1947) Antarctic fishes. Scientific Results of the Norwegian Antarctic Expeditions (1927-1931), 26, 1–76.
  83. O’Brien, K.M., Crockett, E.L., Adams, B.J., Amsler, C.D., Appiah-Madson, H.J., Collins, A., Desvignes, T., Detrich, H.W., Distel, D.L., Eppley, S.M., Frable, B.W., Franz, N.M., Grim, J.M., Kocot, K.M., Mahon, A.R., Mayfield-Meyer, T.J., Mikucki, J.A., Moser, W.E., Schmull, M., Seid, C.A., Smith, C.R., Todgham, A.E. & Watkins-Colwell, G.J. (2022) The time is right for an Antarctic biorepository network. Proceedings of the National Academy of Sciences, 119 (50), e2212800119. https://doi.org/10.1073/pnas.2212800119 DOI: https://doi.org/10.1073/pnas.2212800119
  84. O’Brien, K.M., Rix, A.S., Egginton, S., Farrell, A.P., Crockett, E.L., Schlauch, K., Woolsey, R., Hoffman, M. & Merriman, S. (2018) Cardiac mitochondrial metabolism may contribute to differences in thermal tolerance of red- and white-blooded Antarctic notothenioid fishes. Journal of Experimental Biology, 221 (15), jeb177816. https://doi.org/10.1242/jeb.177816 DOI: https://doi.org/10.1242/jeb.177816
  85. Pollard, D. & DeConto, R.M. (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458 (7236), 329–332. https://doi.org/10.1038/nature07809 DOI: https://doi.org/10.1038/nature07809
  86. Postlethwait, J.H., Yan, Y., Desvignes, T., Allard, C., Titus, T., Le François, N.R. & Detrich III, H.W. (2016) Embryogenesis and early skeletogenesis in the antarctic bullhead notothen, Notothenia coriiceps. Developmental Dynamics, 245 (11), 1066–1080. https://doi.org/10.1002/dvdy.24437 DOI: https://doi.org/10.1002/dvdy.24437
  87. Provan, J. & Bennett, K.D. (2008) Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution, 23 (10), 564–571. https://doi.org/10.1016/j.tree.2008.06.010 DOI: https://doi.org/10.1016/j.tree.2008.06.010
  88. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67 (5), 901–904. https://doi.org/10.1093/sysbio/syy032 DOI: https://doi.org/10.1093/sysbio/syy032
  89. Regan, C.T. (1913) The Antarctic Fishes of the Scottish National Antarctic Expedition. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 49 (2), 229–292. https://doi.org/10.1017/S0080456800003951 DOI: https://doi.org/10.1017/S0080456800003951
  90. Regan, C.T. (1914) Diagnoses of new marine fishes collected by the British Antarctic (“Terra Nova”) Expedition. Annals and magazine of Natural History, Series 8, 13 (73), 11–17. https://doi.org/10.1080/00222931408693450 DOI: https://doi.org/10.1080/00222931408693450
  91. Richardson, J. (1844) Ichthyology of the Voyage of HMS Erebus & Terror, Under the Command of Captain Sir James Clark Ross. E.W. Janson, London, 139 pp.
  92. Riddle, M.J., Craven, M., Goldsworthy, P.M. & Carsey, F. (2007) A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica. Paleoceanography, 22 (1). https://doi.org/10.1029/2006PA001327 DOI: https://doi.org/10.1029/2006PA001327
  93. Sabaj, M.H. (2020) Codes for Natural History Collections in Ichthyology and Herpetology. Copeia, 108 (3), 593–669. https://doi.org/10.1643/ASIHCODONS2020 DOI: https://doi.org/10.1643/ASIHCODONS2020
  94. Sabourenkov, E.N. & Appleyard, E. (2005) Scientific observations in CCAMLR fisheries–past, present and future. CCAMLR Science, 12, 81–98.
  95. Saravia, J., Paschke, K., Oyarzún-Salazar, R., Cheng, C.-H.C., Navarro, J.M. & Vargas-Chacoff, L. (2021) Effects of warming rates on physiological and molecular components of response to CTMax heat stress in the Antarctic fish Harpagifer antarcticus. Journal of Thermal Biology, 99, 103021. https://doi.org/10.1016/j.jtherbio.2021.103021 DOI: https://doi.org/10.1016/j.jtherbio.2021.103021
  96. Sheiko, B.A. (2019) Comments on the nomenclature of genus-and family-series taxa of notothenioid fishes (Perciformes, Notothenioidei). Bionomina, 16 (1), 46–82. https://doi.org/10.11646/bionomina.16.1.3 DOI: https://doi.org/10.11646/bionomina.16.1.3
  97. Skóra, K.E. (1995) Acanthodraco dewitti gen. et sp. n (Pisces, Bathydraconidae) from Admiral Bay (King George Island, South Shetland Islands, Antarctica). Archive of fishery and marine research, 42 (3), 283–289.
  98. Sutter, J., Fischer, H., Grosfeld, K., Karlsson, N.B., Kleiner, T., Van Liefferinge, B. & Eisen, O. (2019) Modelling the Antarctic Ice Sheet across the mid-Pleistocene transition – implications for Oldest Ice. The Cryosphere, 13 (7), 2023–2041. https://doi.org/10.5194/tc-13-2023-2019 DOI: https://doi.org/10.5194/tc-13-2023-2019
  99. Trathan, P.N., Warwick-Evans, V., Young, E.F., Friedlaender, A., Kim, J.H. & Kokubun, N. (2022) The ecosystem approach to management of the Antarctic krill fishery - the “devils are in the detail” at small spatial and temporal scales. Journal of Marine Systems, 225, 103598. https://doi.org/10.1016/j.jmarsys.2021.103598 DOI: https://doi.org/10.1016/j.jmarsys.2021.103598
  100. Vaillant, L.L. (1906) Sur une nouvelle espèce de Chaenichthys provenant de l’expédition antarctique francaise sous le commandement du Dr. Jean Charcot. Bulletin du Muséum National d’Histoire Naturelle, 5, 246–247. https://doi.org/10.5962/bhl.part.4096 DOI: https://doi.org/10.5962/bhl.part.4096
  101. Waite, E.R. (1916) Fishes. Australasian Antarctic Expedition. Scientific Reports, 3, 1–92.
  102. Watters, G.M., Hinke, J.T. & Reiss, C.S. (2020) Long-term observations from Antarctica demonstrate that mismatched scales of fisheries management and predator-prey interaction lead to erroneous conclusions about precaution. Scientific Reports, 10 (1), 2314. https://doi.org/10.1038/s41598-020-59223-9 DOI: https://doi.org/10.1038/s41598-020-59223-9
  103. Westerhold, T., Marwan, N., Drury, A.J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J.S.K., Bohaty, S.M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D.A., Holbourn, A.E., Kroon, D., Lauretano, V., Littler, K., Lourens, L.J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R.H., Wilson, P.A. & Zachos, J.C. (2020) An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369 (6509), 1383–1387. https://doi.org/10.1126/science.aba6853 DOI: https://doi.org/10.1126/science.aba6853