Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-10-25
Page range: 245-268
Abstract views: 431
PDF downloaded: 18

A twin of Polydora hoplura (Annelida: Spionidae) from the Arabian (Persian) Gulf, with review of primers used for barcoding of Spionidae

A.V. Zhirmunsky National Scientific Center of Marine Biology; Far Eastern Branch of the Russian Academy of Sciences; 17 Palchevsky Street; Vladivostok 690041; Russia
Kuwait Institute for Scientific Research; 22107; Salmiya; Kuwait
A.V. Zhirmunsky National Scientific Center of Marine Biology; Far Eastern Branch of the Russian Academy of Sciences; 17 Palchevsky Street; Vladivostok 690041; Russia
A.V. Zhirmunsky National Scientific Center of Marine Biology; Far Eastern Branch of the Russian Academy of Sciences; 17 Palchevsky Street; Vladivostok 690041; Russia
Annelida Systematics morphology gametes reproduction molecular analysis Kuwait

Abstract

The spionid polychaete Polydora hoplura Claparède, 1868 has been widely recorded boring in shells of abalone, oysters, clams, barnacle tests and sponges in temperate and subtropical waters. Molecular studies have suggested conspecificity of individuals collected worldwide but showed high genetic variability of the species with the highest diversity of haplotypes in the South African population. We have compared the morphology and genetic data of shell-boring worms from Kuwait, which were previously assigned to P. hoplura, with American, Asian and European individuals, including those from the type locality in Italy. The Kuwaiti individuals share key diagnostic morphological characters with P. hoplura but differ in ochre pigment on the anterior chaetigers in life, pattern of pigmentation after fixation in formalin, and pattern of methyl green staining of fixed specimens. They also differ in the dimensions of mature spermatozoa. The analysis of sequence data of five gene fragments (total 3483 bp) showed that the intraspecific diversity of P. hoplura and the variability of Polydora individuals from Kuwait are less than the divergences in all studied genes, except for 28S rDNA, between these two groups. These data, as well as the absence of common cytochrome c oxidase subunit I (COI) and 16S haplotypes, and morphological differences between individuals from Kuwait and P. hoplura, allowed us to conclude that the Kuwaiti population is not conspecific with P. hoplura. This conclusion was confirmed by the results of the species delimitation analysis. In the Bayesian inference analysis of the sequence data individuals from Kuwait formed a well-supported clade sister to P. hoplura. These individuals are described and illustrated here as a new species, Polydora mohammadi sp. nov. Primers used for successful amplification of the mitochondrial COI gene in various species of Spionidae are reviewed and we suggest future studies on Polydora use a combination of two primer pairs (2F–spionid–LCO/1R–spionid–HCO and Dorid_COI.3F/Dorid_COI.1R) to target sequences that include the barcode fragments covered with “Folmer” and “Dorid” primers.

 

References

  1. Abe, H. & Sato-Okoshi, W. (2020) Novel symbiotic relationship between a spionid polychaete and Lingula (Brachiopoda: Lingulata: Lingulidae), with description of Polydora lingulicola sp. nov. (Annelida: Spionidae). Zoosymposia, 19 (1), 103–120. https://doi.org/10.11646/zoosymposia.19.1.13
  2. Abe, H. & Sato-Okoshi, W. (2021) Molecular identification and larval morphology of spionid polychaetes (Annelida: Spionidae) from northeastern Japan. Zookeys, 1015, 1–86. https://doi.org/10.3897/zookeys.1015.54387
  3. Al-Kandari, M., Sattari, Z., Hussain, S., Radashevsky, V.I. & Zhadan, A. (2019) Checklist of intertidal polychaetes (Annelida) of Kuwait, northern part of the Arabian Gulf. Regional Studies in Marine Science, 32, 1–11. https://doi.org/10.1016/j.rsma.2019.100872
  4. Almón, B., Pérez-Dieste, J., de Carlos, A. & Bañón, R. (2022) Identification of the shell-boring parasite Polydora hoplura (Annelida: Spionidae) on wild stocks of Pecten maximus in Galician waters, NW Spain. Journal of Invertebrate Pathology, 190, 1–7. https://doi.org/10.1016/j.jip.2022.107750
  5. Aylagas, E., Borja, Á., Irigoien, X. & Rodríguez-Ezpeleta, N. (2016) Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Frontiers in Marine Science, 3, 1–12. https://doi.org/10.3389/fmars.2016.00096
  6. Banse, K. (1970) The small species of Euchone Malmgren (Sabellidae, Polychaeta). Proceedings of the Biological Society of Washington, 83 (35), 387–408.
  7. Benham, W.B. (1896) Archiannelida, Polychaeta, and Myzostomaria. In: Harmer, S.F. & Shipley, A.E. (Eds.), The Cambridge Natural History. Vol. 2. MacMillan and Co., The Cambridge Natural History Society, Cambridge, pp. 241–344.
  8. Blake, J.A. & Evans, J.W. (1973) Polydora and related genera as borers in mollusk shells and other calcareous substrates (Polychaeta: Spionidae). Veliger, 15 (3), 235–249.
  9. Blake, J.A. & Woodwick, K.H. (1972) New species of Polydora (Polychaeta: Spionidae) from the coast of California. Bulletin of the Southern California Academy of Sciences, 70 (2), 72–79.
  10. Blank, M. & Bastrop, R. (2009) Phylogeny of the mud worm genus Marenzelleria (Polychaeta, Spionidae) inferred from mitochondrial DNA sequences. Zoologica Scripta, 38 (3), 313–321. https://doi.org/10.1111/j.1463-6409.2008.00370.x
  11. Blank, M., Laine, A.O., Jürss, K. & Bastrop, R. (2008) Molecular identification key based on PCR/RFLP for three polychaete sibling species of the genus Marenzelleria, and the species’ current distribution in the Baltic Sea. Helgoland Marine Research, 62 (2), 129–141. https://doi.org/10.1007/s10152-007-0081-8
  12. Bogantes, V.E., Boyle, M.J. & Halanych, K.M. (2021) New reports on Pseudopolydora (Annelida: Spionidae) from the East Coast of Florida, including the non-native species P. paucibranchiata. BioInvasions Records, 10 (3), 577–588. https://doi.org/10.3391/bir.2021.10.3.07
  13. Bogantes, V.E., Halanych, K.M. & Meißner, K. (2018) Diversity and phylogenetic relationships of North Atlantic Laonice Malmgren, 1867 (Spionidae, Annelida) including the description of a novel species. Marine Biodiversity, 48 (2), 737–749. https://doi.org/10.1007/s12526-018-0859-8
  14. Bosc, L.A.G. (1802) Histoire naturelle des vers, contenant leur déscription et leurs mœurs; avec figures dessinées d’après nature. Tome premier. Guilleminet, Paris, 324 pp. https://doi.org/10.5962/bhl.title.59169
  15. Bonavia, C., Williams, J. & Krause, M. (2024) Morphological and molecular investigation of Scolelepis agilis (Verrill, 1873) (Annelida: Spionidae) from beaches of the Atlantic coast of North America. African Zoology, 1–25. [published online] https://doi.org/10.1080/15627020.2024.2373809
  16. Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25 (15), 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  17. Carpenter, G.M. & Wheeler, W.C. (1999) Towards simultaneous analysis of morphological and molecular data in Hymenoptera. Zoologica Scripta, 28 (1–2), 251–260. https://doi.org/10.1046/j.1463-6409.1999.00009.x
  18. Carr, C.M., Hardy, S.M., Brown, T.M., Macdonald, T.A. & Hebert, P.D. (2011) A tri-oceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes. PLoS ONE, 6 (7), 1–12. https://doi.org/10.1371/journal.pone.0022232
  19. Claparède, E. (1868) Les Annélides Chétopodes du Golfe de Naples. Ramboz et Schuchardt, Genève, 500 pp. https://doi.org/10.5962/bhl.title.105355
  20. Claparède, E. (1869) Les Annélides Chétopodes du Golfe de Naples. Seconde partie. Mémoires de la Société de Physique et d’Histoire naturelle de Genève, 20 (1), 1–225. https://doi.org/10.5962/bhl.title.2142
  21. Claparède, E. (1870) Les Annélides Chétopodes du Golfe de Naples. Annélides Sédentaires. Genève, Switzerland, Ramboz et Schuchardt, 225 pp., 15 pls. (pls. 17–31). https://doi.org/10.5962/bhl.title.2142
  22. D’Alessandro, M., Castriota, L., Maggio, T., Nasi, F., Carletti, M., Auriemma, R., Romeo, T. & Del Negro, P. (2019) Spiophanes adriaticus, a new species from the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom, 100 (1) , 45–54. https://doi.org/10.1017/S0025315419001061
  23. David, A.A. & Krick, M. (2019) DNA Barcoding of polychaetes collected during the 2018 Rapid Assessment Survey of floating dock communities from New England. Marine Biology Research, 15 (4–6), 317–324. https://doi.org/10.1080/17451000.2019.1655160
  24. David, A.A., Williams, J.D. & Simon, C.A. (2021) A new record of a cryptogenic Dipolydora species (Annelida: Spionidae) in South Africa. Journal of the Marine Biological Association of the United Kingdom, 101 (2), 1–8. https://doi.org/10.1017/s0025315421000163
  25. Davinack, A.A. & Hill, L. (2022) Infestation of wild bay scallops Argopecten irradians on Nantucket Island by the shell-boring polychaete Polydora neocaeca. Diseases of Aquatic Organisms, 151, 123–128. https://doi.org/10.3354/dao03696
  26. Davinack, A.A., Strong, M. & Brennessel, B. (2024) Worms on the Cape: An integrative survey of polydorid infestation in wild and cultivated oysters (Crassostrea virginica) from Massachusetts, USA. Aquaculture, 581, 1–9. https://doi.org/10.1016/j.aquaculture.2023.740366
  27. Diggles, B.K., Hine, P.M., Handley, S.J. & Boustead, N.C. (2002) A handbook of diseases of importance to aquaculture in New Zealand. NIWA Science and Technology Series, 49, 1–200.
  28. Doner, S.A. & Blake, J.A. (2009) Two new species of Aphelochaeta (Polychaeta: Cirratulidae) from deep water off northern California. Zoosymposia, 2, 127–137. https://doi.org/10.11646/zoosymposia.2.1.11
  29. Fitzhugh, K. (1983) New species of Fabriciola and Fabricia (Polychaeta: Sabellidae) from Belize. Proceedings of the Biological Society of Washington, 96 (2), 276–290.
  30. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3 (5), 294–299.
  31. Gastineau, R., Wawrzyniak-Wydrowska, B., Lemieux, C., Turmel, M. & Witkowski, A. (2019) Complete mitogenome of a Baltic Sea specimen of the non-indigenous polychaete Marenzelleria neglecta. Mitochondrial DNA, Part B, 4 (1), 581–582. https://doi.org/10.1080/23802359.2018.1558125
  32. Gaudron, S.M., Pradillon, F., Pailleret, M., Duperron, S., Le Bris, N. & Gaill, F. (2010) Colonization of organic substrates deployed in deep-sea reducing habitats by symbiotic species and associated fauna. Marine Environmental Research, 70 (1), 1–12. https://doi.org/10.1016/j.marenvres.2010.02.002
  33. Geller, J., Meyer, C., Parker, M. & Hawk, H. (2013) Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources, 13 (5), 851–861. https://doi.org/10.1111/1755-0998.12138
  34. Guggolz, T., Meißner, K., Schwentner, M. & Brandt, A. (2019) Diversity and distribution of Laonice species (Annelida: Spionidae) in the tropical North Atlantic and Puerto Rico Trench. Scientific Reports, 9 (1), 1–12. https://doi.org/10.1038/s41598-019-45807-7
  35. Hartman, O. (1943) Description of Polydora websteri. In: Loosanoff, V.L. & Engle, J.B., Polydora in oysters suspended in the water. Biological Bulletin, 85 (1), pp. 70–72. https://doi.org/10.2307/1538270
  36. Hebert, P.D., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003a) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, Series B: Biological Sciences, 270 (1512), 313–321. https://doi.org/10.1098/rspb.2002.2218
  37. Hebert, P.D., Ratnasingham, S. & deWaard, J.R. (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London, Series B: Biological Sciences, 270 (Supplement 1), 96–99. https://doi.org/10.1098/rsbl.2003.0025
  38. Hofsommer, A. (1913) Die Sabelliden-Ausbeute der “Poseidon”-Fahrten und die Sabelliden der Kieler Bucht. Wissenschaftliche Meeresuntersuchungen, Abteilung Kiel, Neue Folge, 15, 305–364.
  39. Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17 (8), 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
  40. Hutchings, P. & Kupriyanova, E. (2018) Cosmopolitan polychaetes – fact or fiction? Personal and historical perspectives. Invertebrate Systematics, 32 (1), 1–9. https://doi.org/10.1071/IS17035
  41. Ivanova, N.V., Zemlak, T.S., Hanner, R.H. & Hebert, P.D.N. (2007) Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7 (4), 544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x
  42. Johnston, G. (1838) Miscellanea Zoologica. III.—The British Ariciadæ. Magazine of Zoology and Botany, Edinburgh, 2 (7), 63–73.
  43. Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A. & Flouri, T. (2017) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33 (11), 1630–1638. https://doi.org/10.1093/bioinformatics/btx025
  44. Katoh, K., Misawa, K., Kuma, K.I. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30 (14), 3059–3066. https://doi.org/10.1093/nar/gkf436
  45. Katoh, K. & Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30 (4), 772–780. https://doi.org/10.1093/molbev/mst010
  46. Lauckner, G. (1980) Diseases of Mollusca: Gastropoda. In: Kinne, O. (Ed.), Diseases of Marine Animals. Vol. I. John Wiley & Sons, Chichester, pp. 311–424.
  47. Lauckner, G. (1983) Diseases of Mollusca: Bivalvia. In: Kinne, O. (Ed.), Diseases of Marine Animals. Vol. II. Biologische Anstalt Helgoland, Hamburg, pp. 477–961.
  48. Lee, G.H., Lee, H.-E. & Min, G.-S. (2021a) The complete mitochondrial genome of Boccardiella hamata (Annelida: Polychaeta: Spionida). Mitochondrial DNA, Part B, 6 (9), 2646–2647. https://doi.org/10.1080/23802359.2021.1964395
  49. Lee, G.H., Meißner, K., Yoon, S.M. & Min, G.S. (2021b) New species of the genus Spio (Annelida, Spionidae) from the southern and western coasts of Korea. Zookeys, 1070, 151–164. https://doi.org/10.3897/zookeys.1070.73847
  50. Lee, G.H. & Min, G.-S. (2021) First record of Scolelepis (Scolelepis) daphoinos (Annelida: Polychaeta: Spionidae) in South Korea. Animal Systematics, Evolution and Diversity, 37 (3), 229–234. https://doi.org/10.5635/ASED.2021.37.3.007
  51. Lee, G.H. & Min, G.-S. (2022a) Two new Scolelepis species (Annelida: Spionidae) from the Yellow Sea in Korea. Zootaxa, 5092 (2), 221–237. https://doi.org/10.11646/zootaxa.5092.2.5
  52. Lee, G.H. & Min, G.-S. (2022b) Rhynchospio aciliata sp. nov., a new spionid species (Annelida, Spionidae) from the Korea Strait. Zookeys, 1100, 191–205. https://doi.org/10.3897/zookeys.1100.80077
  53. Lee, G.H. & Min, G.-S. (2022c) A new polychaete, Scolelepis (Parascolelepis) brunnea sp. nov. (Annelida: Spionidae), from Korea. Zoological Science, 39 (5), 500–506. https://doi.org/10.2108/zs220031
  54. Lee, G.H. & Min, G.-S. (2023) The complete mitochondrial genome of a marine polychaete, Prionospio cf. japonica (Annelida: Spionidae). Mitochondrial DNA, Part B, 8 (9), 985–988. https://doi.org/10.1080/23802359.2023.2241696
  55. Lee, G.H., Yoon, S.M. & Min, G.-S. (2022) First record of two Pseudopolydora (Annelida: Spionidae) species in Korea. Animal Systematics, Evolution and Diversity, 38 (1), 26–33 https://doi.org/10.5635/ASED.2022.38.1.018
  56. Lee, S.J., Kwon, M.-G. & Lee, S.-R. (2020) Molecular detection for two abalone shell-boring species Polydora haswelli and P. hoplura (Polychaeta, Spionidae) from Korea using 18S rDNA and cox1 Markers. Ocean Science Journal, 55 (3), 459–464. https://doi.org/10.1007/s12601-020-0028-4
  57. Lee, S.J. & Lee, S.-R. (2022) Complete mitochondrial genome of the abalone shell-boring Polydora hoplura (Polychaeta, Spionidae). Mitochondrial DNA, Part B, 7 (3), 438–439. https://doi.org/10.1080/23802359.2022.2047116
  58. Leray, M., Yang, J.Y., Meyer, C.P., Mills, S.C., Agudelo, N., Ranwez, V., Boehm, J.T. & Machida, R.J. (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology, 10, 1–14. https://doi.org/10.1186/1742-9994-10-34
  59. Lobo, J., Costa, P.M., Teixeira, M.A.L., Ferreira, M.S.G., Costa, M.H. & Costa, F.O. (2013) Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecology, 13 (1), 1–34. https://doi.org/10.1186/1472-6785-13-34
  60. Mahon, A.R., Mahon, H.K., Dauer, D.M. & Halanych, K.M. (2009) Discrete genetic boundaries of three Streblospio (Spionidae, Annelida) species and the status of S. shrubsolii. Marine Biology Research, 5 (2), 172–178. https://doi.org/10.1080/17451000802317683
  61. Malan, A., Williams, J.D., Abe, H., Sato-Okoshi, W., Matthee, C.A. & Simon, C.A. (2020) Clarifying the cryptogenic species Polydora neocaeca Williams & Radashevsky, 1999 (Annelida: Spionidae): a shell-boring invasive pest of molluscs from locations worldwide. Marine Biodiversity, 50 (4), 1–19. https://doi.org/10.1007/s12526-020-01066-8
  62. Manokaran, S., Prasannakumar, C., Ansari, K.G.M.T., Joydas, T.V., Manikandan, K.P., Aarif, K.M., Raja, S., Ramasamy, P. & Sudhagar, T. (2024) Barcoding, structural, and genetic variation of morphologically adopted polychaetes (Annelida: Paronidae, Lumberineridae, Spionidae) using mitochondrial COI gene sequences from the Bay of Bengal shelf including Oxygen Minimum Zone. Regional Studies in Marine Science, 76, 1–14. https://doi.org/10.1016/j.rsma.2024.103613
  63. Martinelli, J., Considine, M., Casendino, H., Tarpey, C., Jimenez-Hidalgo, I., Padilla-Gamiño, J., King, T., Hauser, L., Rumrill, S. & Wood, C. (2024) Infestation of cultivated Pacific oysters by shell-boring polychaetes along the US West Coast: Prevalence is associated with season, culture method, and pH. Aquaculture, 580 (1–2), 1–12. https://doi.org/10.1016/j.aquaculture.2023.740290
  64. Martinelli, J., Lopes, H., Hauser, L., Jimenez-Hidalgo, I., King, T.L., Padilla-Gamino, J., Rawson, P., Spencer, L., Williams, J. & Wood, C. (2020) Confirmation of the shell-boring oyster parasite Polydora websteri (Polychaeta: Spionidae) in Washington State, USA. Scientific Reports, 10 (1), 1–14. https://doi.org/10.1038/s41598-020-60805-w
  65. Meißner, K. (2005) Revision of the genus Spiophanes (Polychaeta, Spionidae); with new synonymies, new records and descriptions of new species. Zoosystematics and Evolution, 81 (1), 3–65. https://doi.org/10.1002/mmnz.200310001
  66. Meißner, K., Bick, A. & Bastrop, R. (2011) On the identity of Spio filicornis (O.F. Müller, 1776) - with the designation of a neotype, and the description of two new species from the North East Atlantic Ocean based on morphological and genetic studies. Zootaxa, 2815 (1), 1–27. https://doi.org/10.11646/zootaxa.2815.1.1.1
  67. Meißner, K., Bick, A., Guggolz, T. & Götting, M. (2014) Spionidae (Polychaeta: Canalipalpata: Spionida) from seamounts in the NE Atlantic. Zootaxa, 3786 (3), 201–245. https://doi.org/10.11646/zootaxa.3786.3.1
  68. Meißner, K. & Blank, M. (2009) Spiophanes norrisi sp. nov. (Polychaeta: Spionidae) - a new species from the NE Pacific coast, separated from the Spiophanes bombyx complex based on both morphological and genetic studies. Zootaxa, 2278 (1), 1–25. https://doi.org/10.11646/zootaxa.2278.1.1
  69. Meißner, K. & Hutchings, P.A. (2003) Spiophanes species (Polychaeta: Spionidae) from Eastern Australia - with description of new species, new records and an emended generic diagnosis. Records of the Australian Museum, 55 (2), 117–140. https://doi.org/10.3853/j.0067-1975.55.2003.1379
  70. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010. IEEE, New Orleans, Louisiana, pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129
  71. Mohammad, M.-B.M. (1971) Intertidal polychaetes from Kuwait, Arabian Gulf, with descriptions of three new species. Journal of Zoology, London, 163 (3), 285–303. https://doi.org/10.1111/j.1469-7998.1971.tb04536.x
  72. Mohammad, M.-B.M. (1980) Polychaete annelids from Kuwaitian islands, Arabian Gulf, with descriptions of four new species. Zoological Journal of the Linnean Society, 69 (1), 31–42. https://doi.org/10.1111/j.1096-3642.1980.tb01931.x
  73. Munari, C., Wolf, M.A., Infantini, V., Moro, I., Sfriso, A. & Mistri, M. (2020) A new species of Streblospio (Polychaeta: Spionidae) from the northern Adriatic Sea (Mediterranean Sea). Zootaxa, 4742 (1), 149–167. https://doi.org/10.11646/zootaxa.4742.1.10
  74. Nei, M. & Kumar, S. (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford, 333 pp. https://doi.org/10.1093/oso/9780195135848.001.0001
  75. Nelson, T.C. & Stauber, L.A. (1940) Observation of some common polychaetes on New Jersey oyster beds with special reference to Polydora. Anatomical Record, 78 (4), 102–103A.
  76. Nygren, A., Parapar, J., Pons, J., Meißner, K., Bakken, T., Kongsrud, J.A., Oug, E., Gaeva, D., Sikorski, A., Johansen, R.A., Hutchings, P.A., Lavesque, N. & Capa, M. (2018) A mega-cryptic species complex hidden among one of the most common annelids in the North East Atlantic. PLoS One, 13 (6), 1–37. https://doi.org/10.1371/journal.pone.0198356
  77. Nylander, J.A.A. (2004) MrModeltest. Version 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala. [program]
  78. Obst, M., Sundberg, P. & Panova, M. (2020) Short report DNA-based species identification by SeAnalytics AB. Available from: https://seanalytics.se/publications/reports (accessed 17 September 2024) https://doi.org/10.1080/15627020.2017.13
  79. Okuda, S. (1935) Some lacustrine polychaetes with a list of brackish-water polychaetes found in Japan. Annotationes Zoologicae Japonenses, 15 (2), 240–246.
  80. Osborn, K.J., Rouse, G.W., Goffredi, S.K. & Robison, B.H. (2007) Description and relationships of Chaetopterus pugaporcinus, an unusual pelagic polychaete (Annelida, Chaetopteridae). Biological Bulletin, 212 (1), 40–54. https://doi.org/10.2307/25066579
  81. Radashevsky, V.I. (1993) Revision of the genus Polydora and related genera from the North West Pacific (Polychaeta: Spionidae). Publications of the Seto Marine Biological Laboratory, 36 (1/2), 1–60. https://doi.org/10.5134/176224
  82. Radashevsky, V.I., Al-Kandari, M., Malyar, V.V. & Pankova, V.V. (2021a) Pseudopolydora (Annelida: Spionidae) from the Arabian Gulf, Kuwait. European Journal of Taxonomy, 773 (1), 120–168. https://doi.org/10.5852/ejt.2021.773.1519
  83. Radashevsky, V.I. & Choi, J.-W. (2021) Morphology and reproductive biology of a new hermaphroditic Rhynchospio (Annelida: Spionidae) species brooding larvae on the parent’s dorsum. Marine Biodiversity, 51 (65), 1–15. https://doi.org/10.1007/s12526-021-01197-6
  84. Radashevsky, V.I., Choi, J.-W. & Gambi, M.C. (2017) Morphology and biology of Polydora hoplura Claparède, 1868 (Annelida: Spionidae). Zootaxa, 4282 (3), 543–555. https://doi.org/10.11646/zootaxa.4282.3.7
  85. Radashevsky, V.I., Malyar, V.V., Pankova, V.V., Choi, J.-W., Yum, S. & Carlton, J.T. (2023a) Searching for a home port in a polyvectic world: molecular analysis of the marine worm Polydora hoplura (Annelida: Spionidae). Biology, 12, 1–22. https://doi.org/10.3390/biology12060780
  86. Radashevsky, V.I., Malyar, V.V., Pankova, V.V. & Nuzhdin, S.V. (2016b) Molecular analysis of six Rhynchospio Hartman, 1936 species (Annelida: Spionidae) with comments on the evolution of brooding within the group. Zootaxa, 4127 (3), 579–590. https://doi.org/10.11646/zootaxa.4127.3.10
  87. Radashevsky, V.I. & Migotto, A.E. (2017) First report of the polychaete Polydora hoplura (Annelida: Spionidae) from North and South America and Asian Pacific. Marine Biodiversity, 47 (3), 859–868. https://doi.org/10.1007/s12526-016-0515-0
  88. Radashevsky, V.I., Neretina, T.V., Pankova, V.V., Tzetlin, A.B. & Choi, J.-W. (2014) Molecular identity, morphology and taxonomy of the Rhynchospio glutaea complex with a key to Rhynchospio species (Annelida, Spionidae). Systematics and Biodiversity, 12 (4), 424–433. https://doi.org/10.1080/14772000.2014.941039
  89. Radashevsky, V.I. & Olivares, C. (2005) Polydora uncinata (Polychaeta: Spionidae) in Chile: an accidental transportation across the Pacific. Biological Invasions, 7 (3), 489–496. https://doi.org/10.1007/s10530-004-5686-0
  90. Radashevsky, V.I. & Pankova, V.V. (2006) The morphology of two sibling sympatric Polydora species (Polychaeta: Spionidae) from the Sea of Japan. Journal of the Marine Biological Association of the United Kingdom, 86 (2), 245–252. https://doi.org/10.1017/S0025315406013099
  91. Radashevsky, V.I., Pankova, V.V., Malyar, V.V. & Carlton, J.T. (2023b) Boring can get you far: Shell-boring Dipolydora from Temperate Northern Pacific, with emphasis on the global history of Dipolydora giardi (Mesnil, 1893) (Annelida: Spionidae). Biological Invasions, 25 (3), 741–772. https://doi.org/10.1007/s10530-022-02941-0
  92. Radashevsky, V.I., Pankova, V.V., Malyar, V.V., Cerca, J. & Struck, T.H. (2021b) A review of the worldwide distribution of Marenzelleria viridis, with new records for M. viridis, M. neglecta and Marenzelleria sp. (Annelida: Spionidae). Zootaxa, 5081 (3), 353–372. https://doi.org/10.11646/zootaxa.5081.3.3
  93. Radashevsky, V.I., Pankova, V.V., Malyar, V.V., Neretina, T.V., Choi, J.-W., Yum, S. & Houbin, C. (2020) Molecular analysis of Spiophanes bombyx complex (Annelida: Spionidae) with description of a new species. PLoS One, 15 (7), 1–54. https://doi.org/10.1371/journal.pone.0234238
  94. Radashevsky, V.I., Pankova, V.V., Neretina, T.V., Stupnikova, A.N. & Tzetlin, A.B. (2016a) Molecular analysis of the Pygospio elegans group of species (Annelida: Spionidae). Zootaxa, 4083 (2), 239–250. https://doi.org/10.11646/zootaxa.4083.2.4
  95. Read, G.B. (1975) Systematics and biology of polydorid species (Polychaeta: Spionidae) from Wellington Harbour. Journal of the Royal Society of New Zealand, 5 (4), 395–419. https://doi.org/10.1080/03036758.1975.10419361
  96. Rice, L.N., Lindsay, S. & Rawson, P. (2018) Genetic homogeneity among geographically distant populations of the blister worm Polydora websteri. Aquaculture Environment Interactions, 10, 437–446. https://doi.org/10.3354/aei00281
  97. Rice, S.A., Karl, S. & Rice, K.A. (2008) The Polydora cornuta complex (Annelida: Polychaeta) contains populations that are reproductively isolated and genetically distinct. Invertebrate Biology, 127 (1), 45–64. https://doi.org/10.1111/j.1744-7410.2007.00104.x
  98. Rodewald, N., Snyman, R. & Simon, C.A. (2021) Worming its way in—Polydora websteri (Annelida: Spionidae) increases the number of non-indigenous shell-boring polydorin pests of cultured molluscs in South Africa. Zootaxa, 4969 (2), 255–279. https://doi.org/10.11646/zootaxa.4969.2.2
  99. Ronquist, F. & Huelsenbeck, J.P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19 (12), 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  100. Sato-Okoshi, W. (1998) Three new species of polydorids (Polychaeta, Spionidae) from Japan. Species Diversity, 3, 277–288. https://doi.org/10.12782/specdiv.3.277
  101. Sato-Okoshi, W., Abe, H., Nishitani, G. & Simon, C.A. (2017) And then there was one: Polydora uncinata and Polydora hoplura (Annelida: Spionidae), the problematic polydorid pest species represent a single species. Journal of the Marine Biological Association of the United Kingdom, 97 (8), 1675–1684. https://doi.org/10.1017/s002531541600093x
  102. Sato-Okoshi, W., Okoshi, K., Abe, H. & Dauvin, J.-C. (2023) Polydorid species (Annelida: Spionidae) associated with commercially important oyster shells and their shell infestation along the coast of Normandy, in the English Channel, France. Aquaculture International, 31, 195–230. https://doi.org/10.1007/s10499-022-00971-y
  103. Scholin, C.A., Herzog, M., Sogin, M. & Anderson, D.M. (1994) Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. Journal of Phycology, 30, 999–1011. https://doi.org/10.1111/j.0022-3646.1994.00999.x
  104. Schulze, S.R., Rice, S.A., Simon, J.L. & Karl, S.A. (2000) Evolution of poecilogony and the biogeography of North American populations of the polychaete Streblospio. Evolution, 54 (4), 1247–1259. https://doi.org/10.1111/j.0014-3820.2000.tb00558.x
  105. Selifanova, M., Demianchenko, O., Noskova, E., Pitikov, E., Skvortsov, D., Drozd, J., Vatolkina, N., Apel, P., Kolodyazhnaya, E., Ezhova, M.A., Tzetlin, A.B., Neretina, T.V. & Knorre, D.A. (2023) ORFans in mitochondrial genomes of marine polychaete Polydora. Genome Biology and Evolution, 15 (12), 1–12. https://doi.org/10.1093/gbe/evad219
  106. Sikorski, A.V. & Bick, A. (2004) Revision of Marenzelleria Mesnil, 1896 (Spionidae, Polychaeta). Sarsia, 89 (4), 253–275. https://doi.org/10.1080/00364820410002460
  107. Sikorski, A.V., Radashevsky, V.I., Castelli, A., Pavlova, L.V., Nygren, A., Malyar, V.V., Borisova, P.B., Mikac, B., Rousou, M., Martin, D., Gil, J., Pacciardi, L. & Langeneck, J. (2021) Revision of the Laonice bahusiensis complex (Annelida: Spionidae) with a description of three new species. Zootaxa, 4996 (2), 253–283. https://doi.org/10.11646/zootaxa.4996.2.2
  108. Silverbrand, S.J., Lindsay, S.M. & Rawson, P.D. (2021) Detection of a novel species complex of shell-boring polychaetes in the northeastern United States. Invertebrate Biology, 140 (5), 1–15. https://doi.org/10.1111/ivb.12343
  109. Simon, C.A. & Sato-Okoshi, W. (2015) Polydorid polychaetes on farmed molluscs: distribution, spread and factors contributing to their success. Aquaculture Environment Interactions, 7 (2), 147–166. https://doi.org/10.3354/aei00138
  110. Simon, C.A., Sato-Okoshi, W. & Abe, H. (2019) Hidden diversity within the cosmopolitan species Pseudopolydora antennata (Claparède, 1869) (Spionidae: Annelida). Marine Biodiversity, 49 (1), 25–42. https://doi.org/10.1007/s12526-017-0751-y
  111. Sui, J., Dong, D., Wu, X. & Li, X. (2023) A new species of the genus Lindaspio Blake & Maciolek, 1992 (Annelida, Spionidae) from a cold seep near Hainan Island, China. Zookeys, 1153 (4), 105–112. https://doi.org/10.3897/zookeys.1153.101406
  112. Surugiu, V., Schwentner, M. & Meißner, K. (2022) Fixing the identity of Scolelepis squamata (Annelida: Spionidae) – neotype designation, redescription and DNA barcode sequences. Systematics and Biodiversity, 20 (1), 1–24. https://doi.org/10.1080/14772000.2021.2003906
  113. Surugiu, V., Stefan, A. & Popa, O.P. (2020) Morphological and molecular characterization of Scolelepis neglecta (Polychaeta: Spionidae). Vie et Milieu, 70 (1), 33–45. https://doi.org/10.57890/r7nh4s74
  114. Takata, N., Noguchi, D., Tanaka, M. & Awakihara, H. (2011) Genetic characteristics of Polydora cornuta complex (Spionidae; Polychaeta) inhabiting an eutrophic port of Fukuyama. Eco-Engineering, 23 (4), 101–104.
  115. Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38 (7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  116. Vaidya, G., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information. Cladistics, 27 (2), 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  117. Vijapure, T., Sukumaran, S. & Manohar, C.S. (2019) Molecular characterization and phylogenetics of Indian polychaete fauna: scope for implementation in ecological monitoring. Aquatic Ecology, 53 (4), 665–677. https://doi.org/10.1007/s10452-019-09717-0
  118. Verrill, A.E. (1879) Notice of recent additions to the marine Invertebrata of the northeastern coast of America, with descriptions of new genera and species and critical remarks on others. Part I - Annelida, Gephyræa, Nemertina, Nematoda, Polyzoa, Tunicata, Mollusca, Anthozoa, Echinodermata, Porifera. Proceedings of the United States National Museum, 2 (12), 165–205. https://doi.org/10.5479/si.00963801.76.165
  119. Vortsepneva, E., Tzetlin, A., Purschke, G., Mugue, N., Haß-Cordes, E. & Zhadan, A. (2008) The parasitic polychaete known as Asetocalamyzas laonicola (Calamyzidae) is in fact the dwarf male of the spionid Scolelepis laonicola (comb. nov.). Invertebrate Biology, 127 (4), 403–416. https://doi.org/10.1111/j.1744-7410.2008.00137.x
  120. Waser, A.M., Lackschewitz, D., Knol, J., Reise, K., Wegner, K.M. & Thieltges, D.W. (2020) Spread of the invasive shell-boring annelid Polydora websteri (Polychaeta, Spionidae) into naturalised oyster reefs in the European Wadden Sea. Marine Biodiversity, 50 (5), 1–10. https://doi.org/10.1007/s12526-020-01092-6
  121. Webster, H.E. (1879) Annelida Chætopoda of the Virginian coast. Transactions of the Albany Institute, New York, 9, 2–69. https://doi.org/10.5962/bhl.title.11296
  122. Williams, L.-G., Karl, S.A., Rice, S. & Simon, C. (2017) Molecular identification of polydorid polychaetes (Annelida: Spionidae): is there a quick way to identify pest and alien species? African Zoology, 52 (2), 105–117. https://doi.org/10.1080/15627020.2017.1313131
  123. Williams, L., Matthee, C.A. & Simon, C.A. (2016) Dispersal and genetic structure of Boccardia polybranchia and Polydora hoplura (Annelida: Spionidae) in South Africa and their implications for aquaculture. Aquaculture, 465, 235–244. https://doi.org/10.1016/j.aquaculture.2016.09.001
  124. Winsnes, I.M. (1985) The use of methyl green as an aid in species discrimination in Onuphidae (Annelida, Polychaeta). Zoologica Scripta, 14 (1), 19−23. https://doi.org/10.1111/j.1463-6409.1985.tb00175.x
  125. Yan, Y., Wang, M., Wu, X., Wang, H., Zhong, Z. & Li, C. (2024) Mitochondrial and morphological adaptions of Lindaspio polybranchiata (Annelida: Spionidae) in the South China Sea. Marine Ecology Progress Series, 730 (1), 43–58. https://doi.org/10.3354/meps14525
  126. Ye, L., Cao, C., Tang, B., Yao, T., Wang, R. & Wang, J. (2017) Morphological and molecular characterization of Polydora websteri (Annelida: Spionidae), with remarks on relationship of adult worms and larvae using mitochondrial COI gene as a molecular marker. Pakistan Journal of Zoology, 49 (2), 699–710. https://doi.org/10.17582/journal.pjz/2017.49.2.699.710
  127. Ye, L., Tang, B., Wu, K., Su, Y., Wang, R., Yu, Z. & Wang, J. (2015) Mudworm Polydora lingshuiensis sp. n is a new species that inhabits both shell burrows and mudtubes. Zootaxa, 3986 (1), 88–100. https://doi.org/10.11646/zootaxa.3986.1.4
  128. Ye, L., Yao, T., Lu, J., Jiang, J. & Bai, C. (2021) Mitochondrial genomes of two Polydora (Spionidae) species provide further evidence that mitochondrial architecture in the Sedentaria (Annelida) is not conserved. Scientific Reports, 11 (1), 1–10. https://doi.org/10.1038/s41598-021-92994-3
  129. Ye, L., Yao, T., Wu, L., Lu, J. & Wang, J. (2019a) Morphological and molecular diagnoses of Polydora brevipalpa Zachs, 1933 (Annelida: Spionidae) from the shellfish along the coast of China. Journal of Oceanology and Limnology, 37 (2), 713–723. https://doi.org/10.1007/s00343-019-7381-0
  130. Ye, L.T., Wu, L., Wang, J.Y., Li, Q.Z., Guan, J.L. & Luo, B. (2019b) First report of black-heart disease in Kumamoto oyster Crassostrea sikamea spat caused by Polydora lingshuiensis in China. Diseases of Aquatic Organisms, 133 (3), 247–252. https://doi.org/10.3354/dao03352
  131. Zachs, I.G. (1933) Polychaeta of the North Japan Sea. Explorations of the Seas of the USSR, 19, 125–137. [in Russian with German Summary]
  132. Zhou, H., Zhang, Z., Chen, H., Sun, R., Wang, H., Guo, L. & Pan, H. (2010) Integrating a DNA barcoding project with an ecological survey: a case study on temperate intertidal polychaete communities in Qingdao, China. Chinese Journal of Oceanology and Limnology, 28 (4), 899–910. https://doi.org/10.1007/s00343-010-9131-1