Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-10-25
Page range: 269-292
Abstract views: 179
PDF downloaded: 14

The West Pacific anemone-shrimp Ancylomenes speciosus (Okuno, 2004) (Crustacea: Decapoda: Palaemonidae)—a species complex or single species?

Department of Biology and Ecology; Faculty of Science; University of Ostrava; Chittussiho 10; CZ-71000 Ostrava; Czech Republic
Department of Biology and Ecology; Faculty of Science; University of Ostrava; Chittussiho 10; CZ-71000 Ostrava; Czech Republic
Department of Biology and Ecology; Faculty of Science; University of Ostrava; Chittussiho 10; CZ-71000 Ostrava; Czech Republic
Department of Marine Biotechnology and Resources; National Sun Yat-sen University; Kaohsiung 80424; Taiwan; R.O.C.; National Museum of Marine Biology and Aquarium; Pingtung; 94450; Taiwan; R.O.C.
Crustacea Ancylomenes speciosus Caridea colour pattern morphology symbiotic shrimp

Abstract

A series of specimens identifiable as the anemone-associated shrimp Ancylomenes speciosus (Okuno, 2004) are reported here from New Caledonia, NE Australia, and SW Taiwan. Detailed morphological remarks and figures of the specimens are provided. All examined adults are morphologically very similar, males and subadults differ from adult females mainly by their unarmed second cheliped fingers and the more elongated sixth pleomere. The New Caledonian and Australian specimens differ by their colour pattern from adult Taiwanese specimens. The genetic divergences among specimens are 5.1–6.4% for COI and 2.5–3.7% for 16S genes. The interregional genetic divergences between those specimens are generally 2.5–3 times lower than the interspecific divergences revealed for three other DNA-analysed species (A. kobayashii, A. luteomaculatus, and A. magnificus). Considering the lower minimal values of genetic divergences, the morphological similarity between regions, the occurrence of both colour morphs in Taiwan, and reported photos of intermediate colour forms, the examined shrimps are provisionally regarded as representatives of a single species A. speciosus. However, based on the maximal divergence values, the examined specimens might also represent a species complex. The true taxonomic status of these specimens will thus need a more detailed morphological and molecular examination of further specimens from more western-Pacific locations.

 

References

  1. Bracken-Grissom, H.D., Robles, R. & Felder, D. (2014) Molecular phylogenetics of American snapping shrimps allied to Alpheus floridanus Kingsley, 1878 (Crustacea: Decapoda: Alpheidae). Zootaxa, 3895 (4), 492–502. https://doi.org/10.11646/zootaxa.3895.4.2
  2. Bruce, A.J. (1979) Notes on some Indo-Pacific Pontoniinae, XXXI. Periclimenes magnificus sp. nov. a coelenterate associate from the Capricorn Islands (Decapoda, Palaemonidae). Crustaceana, Supplement 5, 195–208, pl.1. https://doi.org/10.1163/9789004629349_028
  3. Bruce, A.J. (1990) A new cnidarian-associated palaemonid shrimp from Port Essington, Cobourg Peninsula, Australia. Indo-Malayan Zoology, 6, 229–243.
  4. Bruce, A.J. (2010a) Ancylomenes kuboi and A. okunoi spp. nov. (Decapoda: Pontoniinae), from the Australian Northwest Shelf, Vietnam and the Philippines. In: De Grave, S. & Fransen, C.H.J.M. (eds), Contributions to Shrimp Taxonomy. Zootaxa, 2372 (1), pp. 169–176. https://doi.org/10.11646/zootaxa.2372.1.17
  5. Bruce, A.J. (2010b) Pontoniine Shrimps (Crustacea: Decapoda: Palaemonidae) from the CReefs 2009 Heron Island Expedition, with a review of the Heron Island pontoniine fauna. Zootaxa, 2541 (1), 50–68. https://doi.org/10.11646/zootaxa.2541.1.3
  6. Bruce, A.J. (2011) A note on an Ancylomenes (Crustacea: Decapoda: Pontoniinae) from the Siboga expedition. Zootaxa, 3001 (1), 65–67. https://doi.org/10.11646/zootaxa.3001.1.5
  7. Catala, R. (1979) Treasures of the Tropic Seas. Times Editions, Singapore, 334 pp.
  8. Chadwick, N.E., Ďuriš, Z. & Horká, I. (2008) Biodiversity and behavior of shrimps and fishes symbiotic with sea anemones in the Gulf of Aqaba, northern Red Sea. In: Por, D.V. & Ben-Eliahu, N. (Eds.), Aqaba-Eilat, the Improbable Gulf. Environment, Biodiversity and Preservation. Magnes Press, Jerusalem, pp. 209–223 + 238–239. [ISBN 978-965-493-380-3]
  9. Chow, L.H., De Grave, S. & Tsang, L.M. (2021) Evolution of protective symbiosis in palaemonid shrimps (Decapoda: Caridea) with emphases on host spectrum and morphological adaptations. Molecular Phylogenetics and Evolution, 162, e107201. https://doi.org/10.1016/j.ympev.2021.107201
  10. Coleman, N. (1988) Discover Heron Island. Sea Australia Resource Centre, Rochedale South, Queensland, 64 pp.
  11. Coleman, N. (1991) Encyclopedia of Marine Animals. Blandford, London, 324 pp.
  12. Coleman, N. (2002) Lord Howe Island Marine Park. Neville Coleman’s World of Water, Springwood, Queensland, 95 pp.
  13. Ďuriš, Z., Šobáňová, A. (2020) Deepsea palaemonid shrimps of Papua New Guinea (Crustacea, Decapoda, Palaemonidae). In: Corbari, L., Ahyong, S.T. & Chan, T.-Y. (Eds.), Deep-Sea Crustaceans from Papua New Guinea. Tropical Deep-Sea Benthos 31. Mémoires du Muséum national d’Histoire naturelle. Vol. 213. Muséum national d’Histoire naturelle, Paris, pp. 369–401. [ISBN: 978-2-85653-913-2]
  14. Edgar, R.C. (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. https://doi.org/10.1093/nar/gkh340
  15. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299. https://doi.org/10.1371/journal.pone.0013102
  16. Horká, I., De Grave, S., Fransen, C.H.J.M., Petrusek, A. & Ďuriš, Z. (2016) Multiple host switching events shape the evolution of symbiotic palaemonid shrimps (Crustacea: Decapoda). Scientific Reports, 6, e26486. https://doi.org/10.1038/srep26486
  17. Horká, I., De Grave, S., Fransen, C.H.J.M., Petrusek, A. & Ďuriš, Z. (2018) Multiple origins and strong phenotypic convergence in fish-cleaning. Molecular Phylogenetics and Evolution, 124, 71–81. https://doi.org/10.1016/j.ympev.2018.02.006
  18. Images du Monde (2023) Ancylomenes venustus. Available from: https://www.picture-worl.org/arthropode-nouvelle-caledonie-ancylomenes-venustus-bruce-1989.html (accessed 3 February 2024)
  19. Jones, D.S. & Morgan, G.J. (1994) A field guide to Crustaceans of Australian Waters. Reed, Chatswood, 216 pp.
  20. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096
  21. Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701. https://doi.org/10.1093/molbev/mss020
  22. Letunic, I. & Bork, P. (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49, 293–296. https://doi.org/10.1093/nar/gkab301
  23. Liu, M.Y., Cai, Y.X. & Tzeng, C.S. (2007) Molecular systematics of the freshwater prawn genus Macrobrachium Bate, 1868 (Crustacea: Decapoda: Palaemonidae) inferred from mtDNA sequences, with emphasis on east Asian species. Zoological Studies, 46, 272–289.
  24. Marin, I. & Chan, T.-Y. (2014) Deep water echinoid-associated pontoniine shrimp “Periclimenes hertwigi Balss, 1913” species group (Crustacea: Decapoda: Caridea: Palaemonidae): species review, description of a new genus and species from Philippines. Zootaxa, 3835 (3), 301–324. https://doi.org/10.11646/zootaxa.3835.3.1
  25. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE), 2010, 1–8. https://doi.org/10.1109/GCE.2010.5676129
  26. Minemizu, R. (2013) Coral Reef Shrimps of Indo-West Pacific. Bun-ichi Sogo Shuppan, Co. Ltd., Tokyo, 144 pp. [in Japanese]
  27. Okuno, J. (2004) Periclimenes speciosus, a new species of anthozoan associated shrimp (Crustacea: Decapoda: Palaemonidae) from southern Japan. Zoological Science, 21, 865–875. https://doi.org/10.2108/zsj.21.865
  28. Okuno, J. & Bruce, A.J. (2010) Designation of Ancylomenes gen. nov., for the ‘Periclimenes aesopius species group’ (Crustacea: Decapoda: Palaemonidae), with the description of a new species and a checklist of congeneric species. In: De Grave, S. & Fransen, C.H.J.M. (Eds.), Contributions to Shrimp Taxonomy. Zootaxa, 2372 (1), pp. 85–105. https://doi.org/10.11646/zootaxa.2372.1.11
  29. Okuno, J. & Nomura, K. (2002) A new species of the ‘Periclimenes aesopius species group’ (Decapoda: Palaemonidae: Pontoniinae) associated with sea anemone from Pacific coast of Honshu, Japan. Natural History Research, 7, 83–94.
  30. Palumbi, S., Martin, A., Romaro, S., McMillan, W.O., Stice, L. & Grabowski, G. (2002) The Simple Fool’s Guide to PCR. Version 2.0. University of Hawaii, Honolulu, 45 pp.
  31. Rambaut, A. & Drummond, A.J. (2009) Tracer. MCMC Trace analysis tool. Version 1.7.2. Available from: https://github.com/beast-dev/tracer/releases/tag/v1.7.2 (accessed 24 September 2024)
  32. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  33. Ryanskiy, A. (2014) Coral Reef Crustaceans from Red Sea to Papua. 2nd Edition. Reef ID Books, Andrey Ryanskiy, s.l., 149 pp.
  34. Saito, N. (2015) A new hemiarthrine bopyrid, Izuohshimaphryxus hoshinoi (Crustacea: Isopoda) from Izu-Ohshima Island, Sagami Sea, Pacific coast of central Japan. Crustacean Research, 44, 67–73. https://doi.org/10.18353/crustacea.44.0_67
  35. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  36. Steene, R. (1990) Coral Reefs, Nature’s Richest Realm. Crawford House Press, Bathurs, 335 pp.
  37. Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564–577. https://doi.org/10.1080/10635150701472164
  38. Vaughan, D.B., Grutter, A.S., Costello, M.J. & Hutson, K.S. (2016) Cleaner fishes and shrimp diversity and a re-evaluation of cleaning symbioses. Fish Fishes, 18, 698–716. https://doi.org/10.1111/faf.12198
  39. Xia, X. (2018) DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 35, 1550–1552. https://doi.org/10.1093/molbev/msy073
  40. Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. (2003) An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 26, 1–7. https://doi.org/10.1016/s1055-7903(02)00326-3