Abstract
Previous studies have highlighted possible cryptic biodiversity in the genus Neoscopelus. This hypothesis was tested using new morphological, molecular and biogeographical data on species of this genus caught in the north Atlantic between 2010 and 2022. The information obtained has been combined with available data in an integrative approach, including a review of morphological characters reported in the ichthyological literature and DNA-based species delimitation analyses. The main outcome of the present study is the description of Neoscopelus serranoi sp. nov. from the Atlantic and southwestern Indian Oceans. The new species is morphologically very similar to Neoscopelus microchir from which differs in having a shorter anal-fin base, a shorter pelvic fin, more dorsal and pectoral-fin rays, less anal-fin rays, fewer gillrakers and fewer isthmus and lateral photophores. They also differ in geographic distribution, with the new species occurring in the Atlantic Ocean and the near southwestern Indian Ocean, whereas N. microchir was originally described from Japanese waters of the Pacific Ocean. A literature review of available morphological data between geographic areas for Neoscopelus macrolepidotus and Neoscopelus microchir showed a large intraspecific overlap and no boundaries. However, molecular species delimitation based on the mitochondrial COI gene revealed the existence of cryptic diversity in both species, with eight to ten molecular operational taxonomic units (MOTU), compared to three valid species. Neoscopelus serranoi sp. nov. was considered an independent MOTU in all analyses performed, supporting the morphological identification as a new species. These results highlight that the taxonomy of Neoscopelus is far from settled and show that a greater sampling effort is needed to resolve the uncertainties and to describe unknown putative species. This also exemplifies the virtues of integrative taxonomy in delving into the systematics of deep-sea fishes.
References
- Arai, R. (1969) A new iniomous fish of the genus Neoscopelus from Suruga Bay, Japan. Bulletin of the National Museum of Nature and Science, Tokyo, 12 (3), 465–471.
- Bañón, R., del Río, J.L., Piñeiro, C. & Casas, M. (2002) Occurrence of tropical affinity fishes in Galician waters NW Spain. Journal of the Marine Biological Association of the United Kingdom, 82 (5), 877–880. https://doi.org/10.1017/S0025315402006288
- Bañón, R., Arronte, J.C., Vázquez-Dorado, S., del Río, J.L. & de Carlos, A. (2013) DNA barcoding of the genus Lepidion (Gadiformes: Moridae) with recognition of Lepidion eques as a junior synonym of Lepidion lepidion. Molecular Ecology Resources, 13 (2), 189–199. https://doi.org/10.1111/1755-0998.12045
- Bañón, R., Arronte, J.C., Rodríguez-Cabello, C., Piñeiro, C.G., Punzón, A. & Serrano, A. (2016) Commented checklist of marine fishes from the Galicia Bank seamount (NW Spain). Zootaxa, 4067 (3), 293–333. https://doi.org/10.11646/zootaxa.4067.3.2
- Bañón, R., de Carlos, A., Acosta-Morillas, V. & Baldó, F. (2022) Geographic range expansion and taxonomic notes of the shortfin neoscopelid Neoscopelus cf. microchir (Myctophiformes: Neoscopelidae) in the North-Eastern Atlantic. Journal of Marine Science and Engineering, 10, 954. https://doi.org/10.3390/jmse10070954
- Bañón, R., Barros-García, D., Sánchez-Ruiloba, L., del Río, J.L., González-Carrión, F. & de Carlos, A. (2023) Deep-sea anglerfish (Lophiiformes: Ceratioidei) diversity from the western North Atlantic throughout morphology and DNA barcoding. Marine Biodiversity, 53, 23. https://doi.org/10.1007/s12526-022-01330-z
- Bañón-Díaz, R., Casas-Sánchez, J.M., Piñeiro-Álvarez, C.G. & Covelo, M. (1997) Capturas de peces de afinidades tropicales en aguas atlánticas de Galicia (noroeste dela península Ibérica). Boletín Instituto Español de Oceanografía, 13 (1–2), 57–66.
- Bekker, V.E. & Shcherbachev, Yu. N. (1990) Bathypelagic species of the families Neoscopelidae and Myctophidae from the Indian Ocean, with a description of a new species of Diaphus. Journal of Ichthyology, 30 (7), 122–134.
- Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A. Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M., Mendes, F.K., Müller, N.F., Ogilvie, H.A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M.A., Wu, C.-H., Xie, D., Zhang, C., Stadler, T. & Drummond, A.J. (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15, e1006650. https://doi.org/10.1371/journal.pcbi.1006650
- Cabezas, M.P., Lasso-Alcalá, O.M., Quintero T.E., Xavier, R., Giarrizzo, T., Nunes, J. L.S., Machado, F.S., Gómez, J., Pedroza, W.S. & Jowers, M.J. (2022) Clarifiying the taxonomy of some cryptic blennies (Blenniidae) in their native and introduced range. Scientific Reports, 12, 9514. https://doi.org/10.1038/s41598-022-12580-z
- Coleman, C.O. (2015) Taxonomy in times of the taxonomic impediment – examples from the community of experts on amphipod crustaceans. Journal of Crustacean Biology, 35 (6), 729–740. https://doi.org/10.1163/1937240X-00002381
- Daly-Engel, T.S., Baremore, I.E., Grubbs, R.D., Gulak, S.J., Graham, R.T. & Enzenauer, M.P. (2019) Resurrection of the sixgill shark Hexanchus vitulus Springer & Waller, 1969 (Hexanchiformes, Hexanchidae), with comments on its distribution in the northwest Atlantic Ocean. Marine Biodiversity, 49, 759–768. https://doi.org/10.1007/s12526-018-0849-x
- Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109
- de Carlos, A., Bañón, R., Cobo-Arroyo, S., Arronte, J.C., del Río, J.L. & Barros-García, D. (2020) DNA barcoding flags the existence of sympatric cryptic species in the slender codling Halargyreus johnsonii (Gadiformes, Moridae). Marine Biodiversity, 50, 49. https://doi.org/10.1007/s12526-020-01074-8
- de Queiroz-Brito, M., Machado, C., Maia, D., Jacobina, U., Nirchio, M., Rotundo, M., Tubino, R., Iriarte, P., Haimovici, M. & Torres, R. (2022) DNA barcoding reveals deep divergent molecular units in Pomatomus saltatrix (Perciformes: Pomatomidae): implications for management and global conservation. Journal of the Marine Biological Association of the United Kingdom, 102 (1–2), 139–151. https://doi.org/10.1017/S0025315422000236
- DeSalle, R. & Goldstein, P. (2019) Review and interpretation of trends in DNA Barcoding. Frontiers in Ecology and Evolution, 7, 302. https://doi.org/10.3389/fevo.2019.00302
- Devine, J.A., Baker, K.D. & Haedrich, R.L. (2006) Fisheries: deep-sea fishes qualify as endangered. Nature, 439, 29. https://doi.org/10.1038/439029a
- Donavaro, R., Fanelli, E., Aguzzi, J., Billett, D., Carugati, L., Corinaldesi, C., Dell’Anno, A., Gjerde, K., Jamieson, A.J., Kark, S., McClain, C., Levin, L., Levin, N., Ramirez-Llodra, E., Ruhl, H., Smith, C.R., Snelgrove, P.V.R., Thomsen, L., Van Dover, C.L. & Yasuhara, M. (2020) Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nature Ecology and Evolution, 4, 181–192. https://doi.org/10.1038/s41559-019-1091-z
- Dupuis, J.R., Roe, A.D. & Sperling, F.A.H. (2012) Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Molecular Ecology, 21 (18), 4422–4436. https://doi.org/10.1111/j.1365-294X.2012.05642.x
- Frutos, I., Kaiser, S., Pułaski, Ł., Studzian, M. & Błazewicz, M. (2022) Challenges and advances in the taxonomy of deep-sea Peracarida: from traditional to modern methods. Frontiers in Marine Science, 9, 799191. https://doi.org/10.3389/fmars.2022.799191
- Fujisawa, T. & Barraclough, T.G. (2013) Delimiting Species Using Single-Locus Data and the Generalized Mixed Yule Coalescent Approach: A Revised Method and Evaluation on Simulated Data Sets. Systematic Biology, 62 (5), 707–724. https://doi.org/10.1093/sysbio/syt033
- Funk, D.J. & Omland, K.E. (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34, 397–423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421
- Furnestin, J., Dardignac, J., Maurin, C., Vincent, A., Coupe, R. & Boutiere, H. (1958) Données nouvelles sur les poissons du Maroc atlantique. Revue des Travaux de l’Institut des Pêches Maritimes, 22, 378–493.
- Gaither, M.R., Bowen, B.W., Rocha, L.A. & Briggs, J.C. (2016) Fishes that rule the world: circumtropical distributions revisited. Fish and Fisheries, 17 (3), 664–679. https://doi.org/10.1111/faf.12136
- Galtier, N., Nabholz, B., Glémin, S. & Hurst, G.D.D. (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology, 18 (22), 4541–4550. https://doi.org/10.1111/j.1365-294X.2009.04380.x
- Glover, A.G., Higgs, N. & Horton, T. (2023) World Register of Deep-Sea species (WoRDSS). Available at: https://www.marinespecies.org/deepsea (accessed 26 July 2023)
- Guimaraes, K., Rosso, J., González-Castro, M., Souza, M., Astarloa, J. & Rodrigues, L. (2022) A new species of Hoplias malabaricus species complex (Characiformes: Erythrinidae) from the Crepori River, Amazon basin, Brazil. Journal of Fish Biology, 100 (2), 425–443. https://doi.org/10.1111/jfb.14953
- Guindon, S. & Gascuel, O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology, 52 (5), 696–704. https://doi.org/10.1080/10635150390235520
- Guo, B. & Kong, L. (2022) Comparing the efficiency of single-locus species delimitation methods within Trochoidea (Gastropoda: Vetigastropoda). Genes, 13, 2273. https://doi.org/10.3390/genes13122273
- Hulley, P.A. (1990) Neoscopelidae. In: Quéro, J.C., Hureau, J.C., Karrer, C., Post, A. & Saldanha, L. (Eds.), Check-list of the fishes of the eastern tropical Atlantic. Vol. 1. UNESCO, Paris, pp. 468−469.
- Hulley, P.A. & Paxton, J.R. (2016) Neoscopelidae. In: Carpenter, K.E. & De Angelis, N. (Eds.), The Living Marine Resources of the Eastern Central Atlantic. Vol. 3. FAO, Rome, pp. 1855–1857.
- Ivanova, N.V., Zemlak, T.S., Hanner, R.H. & Hebert, P.D.N. (2007) Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7 (4), 544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x
- Johnson, J.Y. (1863) Description of five new species of fishes obtained at Madeira. Proceedings of the Zoological Society of London, 1863, 36–46.
- Jordan, D.S. & Starks, E.C. (1904) List of fishes dredged by the steamer Albatross off the coast of Japan in the summer of 1900, with descriptions of new species and a review of the Japanese Macrouridae. Bulletin of the United States Fish Commission, 22, 577–630.
- Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A. & Flouri, T. (2017) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo, Bioinformatics, 33 (11), 1630–1638. https://doi.org/10.1093/bioinformatics/btx025
- Kekkonen, M. & Hebert, P.D.N. (2014) DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources, 14 (4), 706–715. https://doi.org/10.1111/1755-0998.12233
- Korshunova, T., Lundin, K., Malmberg, K. & Martynov, A. (2023) Narrowly defined taxa on a global scale: The phylogeny and taxonomy of the genera Catriona and Tenellia (Nudibranchia, Trinchesiidae) favours fine-scale taxonomic differentiation and dissolution of the «lumpers & splitters» dilemma. Evolutionary Applications, 16 (2), 428–460. https://doi.org/10.1111/eva.13468
- Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29 (6), 1695–1701. https://doi.org/10.1093/molbev/mss020
- Lin, C.H., Nolf, D., Steurbaut, E. & Girone, A. (2017) Fish otoliths from the Lutetian of the Aquitaine Basin (SW France), a breakthrough in the knowledge of the European Eocene ichthyofauna. Journal of Systematic Palaeontology, 15 (11), 879–907. https://doi.org/10.1080/14772019.2016.1246112
- Lloris, D. (1986) Ictiofauna demersal e aspectos biogéograficos de la costa sudoccidental de África (SWA/Namibia). Monografías de Zoología Marina, 1, 9–432. https://doi.org/10.1163/9789004611375
- Matsubara, K. (1943) Ichthyological annotations from the depth of the Sea of Japan, I-VII. Journal of the Sigenkagaku Kenkyusyo, 1, 37–82.
- Maul, G.E. (1951) Nota sobre as duas espécies do género Neoscopelus. Boletim do Museu Municipal do Funchal, 5, 56–63.
- Maul, G.E. (1976) The fishes taken in bottom trawls by R.V. ‘Meteor’ during the 1967 Seamount Cruises in the Northeast Atlantic. Meteor Forschungsergeb, Reihe D, 22, 1–69.
- McEachran, J.D. & Fechhelm, J.D. (1998) Fishes of the Gulf of Mexico. Vol. 1. University of Texas Press, Austin, Texas, 1112 pp.
- Miglietta, M.P., Faucci, A. & Santini, F. (2011) Speciation in the Sea: overview of the symposium and discussion of future directions. Integrative and Comparative Biology, 51 (3), 449–455. https://doi.org/10.1093/icb/icr024
- Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE), New Orleans, Lousiana, pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129
- Monaghan, M.T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D.J.G., Lees, D. C., Ranaivosolo, R., Eggleton, P., Barraclough, T.G. & Vogler, A.P. (2009) Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology, 58 (3), 298–311. https://doi.org/10.1093/sysbio/syp027
- Moore, J.A., Hartel, K.E., Craddock, J.E. & Galbraith, J.K. (2003) An annotated list of deepwater fishes from off the New England region, with new area records. Northeastern Naturalist, 10 (2), 159–248. https://doi.org/10.2307/3858285
- Nafpaktitis, B.G. (1977) Family Neoscopelidae. In: Gibbs, R.H., Berry, F.H., Böhlke, J.E., Cohen, D.M., Collette, B.B., Eschmeyer, W.N., Mead, G.W., Merriman, D., Pietsch, T.W. & Parr, A.E. (Eds.), Fishes of the western North Atlantic. Vol. 7. Yale University, New Haven, Connecticut, pp. 1–12.
- Ordines, F., Fricke, R., González, F. & Baldó, F. (2017) First record of Neoscopelus macrolepidotus johnson, 1863 (Actinopterygii: Myctophiformes: Neoscopelidae) from Irish waters (Porcupine Bank, north-eastern Atlantic). Acta Ichthyologica et Piscatoria, 47 (1), 85–89. https://doi.org/10.3750/AIEP/02141
- Orlov, A.M. (2022). Contemporary ichthyological and fisheries research of deep-water fish: new advances, current challenges, and future developments. Journal of Marine Science and Engineering, 10, 166. https://doi.org/10.3390/jmse10020166
- Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin, W.D. & Volger, A.P. (2006) Sequence based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55 (4), 595–609. https://doi.org/10.1080/10635150600852011
- Priede, I.G. (2017) Deep-sea fishes: biology, diversity, ecology and fisheries. Cambridge University Press, Cambridge, 504 pp. https://doi.org/10.1017/9781316018330
- Puckridge, M., Andreakis, N., Appleyard, S.A. & Ward, R.D. (2013) Cryptic diversity in flathead fishes (Scorpaeniformes: Platycephalidae) across the Indo-West Pacific uncovered by DNA barcoding. Molecular Ecology Resources, 13 (1), 32–42. https://doi.org/10.1111/1755-0998.12022
- Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21 (2), 609–620. https://doi.org/10.1111/1755-0998.13281
- Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using tracer 1.7. Systematic Biology, 67 (5), 901–904. https://doi.org/10.1093/sysbio/syy032
- Ratnasingham, S. & Hebert, P.D.N. (2007) BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7 (3), 355–364. https://doi.org/ 10.1111/j.1471-8286.2007.01678.x
- Ratnasingham, S. & Hebert, P.D.N. (2013) A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System. PLoS ONE, 8, e66213. https://doi.org/10.1371/journal.pone.0066213
- Reid, N.M. & Carstens, B.C. (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology, 12, 196. https://doi.org/10.1186/1471-2148-12-196
- Roa-Varón, A., Saavedra-Díaz, L.M., Acero, A. & Mejía, L.S. (2007) Nuevos registros de peces para el Caribe Colombiano de los órdenes Myctophiformes, Polymixiformes, Gadiformes, Ophidiiformes and Lophiiformes. Boletín de Investigaciones Marinas y Costeras, 36, 181–207. https://doi.org/10.25268/bimc.invemar.2007.36.0.206
- Rodríguez, C.M. & Sang, L. (1986) Nuevas adicciones a la ictiofauna marina Dominicana. Ciencia y Sociedad, 11, 188–200. https://doi.org/10.22206/cys.1986.v11i2.pp188-200
- Rossini, B.C., Oliveira, C.A.M., de Melo, F.A.G., Bertaco, V.d.A., Díaz de Astarloa, J. M., Rosso, J.J., Foresti, F. & Oliveira, C. (2016) Highlighting Astyanax species diversity through DNA barcoding. PLoS ONE, 11, e0167203. https://doi.org/10.1371/journal.pone.0167203
- Schwarzhans, W. (2004) Fish otoliths from the Paleocene (Selandian) of West Greenland. Geoscience, 42, 1–32. https://doi.org/10.7146/moggeosci.v42i.140285
- Sutton, T.T., Hulley, P.A., Wienerroither, R., Zaera-Pérez, D. & Paxton, J.R. (2020) Identification guide to the mesopelagic fishes of the central and south east Atlantic Ocean. FAO, Rome, 343 pp.
- Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38 (7), 3022–3027. https://doi.org/10.1093/molbev/msab120
- Tatsuta, N., Imamura, H., Nakaya, K., Kawai, T., Abe, T., Sakaoka, K., Takagi, S. & Yabe, M. (2014) Taxonomy of mesopelagic fishes collected around the Ogasawara Islands by the T/S Oshoro-Maru. Memoirs of the Faculty of Fisheries Sciences, Hokkaido University, 56, 1–64.
- Teramura, A., Koeda, K., Matsuo, A., Sato, M.P. Senou, H., Ho, H.C., Suyama, Y., Kikuchi, K. & Hirase, S. (2022) Assessing the effectiveness of DNA barcoding for exploring hidden genetic diversity in deep-sea fishes. Marine Ecology-Progress Series, 701, 83–98. https://doi.org/10.3354/meps14193
- Uiblein, F. & Gouws, G. (2014) A new goatfish species of the genus Upeneus (Mullidae) based on molecular and morphological screening and subsequent taxonomic analysis. Marine Biology Research, 10 (7), 655–681. https://doi.org/10.1080/17451000.2013.850515
- Uyeno, T., Matsuura, K. & Fujii, E. (1983) Fishes trawled off Suriname and French Guiana. Japan Marine Fishery Resource Research Center, Tokyo, 519 pp.
- Wada, H., Ohtomi, J. & Motomura, H. (2021) The northernmost and second Japanese records of Diretmoides veriginae (Beryciformes: Diretmidae) from Suruga Bay and off the Satsuma Peninsula, and the first records of Neoscopelus porosus (Myctophiformes: Neoscopelidae) from Kagoshima Prefecture. Ichthy, Natural History of Fishes of Japan, 8, 24–30. https://doi.org/10.34583/ichthy.8.0_24
- Wang, M.C. & Shao, K.T. (2006) Ten new records of lanternfishes (Pisces: Myctophiformes) collected around Taiwanese waters. Journal of the Fisheries Society of Taiwan, 33 (1), 55–67. https://doi.org/10.29822/JFST.200603.0006
- Wang, T., Zhang, Y.P., Yang, Z.Y., Liu, Z. & Du, Y.Y. (2020) DNA barcoding reveals cryptic diversity in the underestimated genus Triplophysa (Cypriniformes: Cobitidae, Nemacheilinae) from the northeastern Qinghai-Tibet Plateau. BMC Ecology and Evolution, 20, 151. https://doi.org/10.1186/s12862-020-01718-0
- Zemlak, T.S., Ward, R.D., Connell, H.D., Holmes, B.H. & Hebert, P.D.N. (2009) DNA barcoding reveals overlooked marine fishes. Molecular Ecology Resources, 9 (s1), 237–242. https://doi.org/10.1111/j.1755-0998.2009.02649.x
- Zhang, J., Kapli, R., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29 (22), 2869–2876. https://doi.org/10.1093/bioinformatics/btt499