Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-12-23
Page range: 62-71
Abstract views: 166
PDF downloaded: 12

Coastal mites (Oribatida, Ameronothridae) found far from the coast in moss growing on the Cathédrale Notre-Dame de Paris, France, fifty years after their first discovery in this historic site

Science Research Center; Hosei University; Fujimi 2-17-1 Chiyoda-ku; Tokyo; 102-8160 Japan
The Mt. Fuji Institute for Nature and Biology; Showa University; Kamiyoshida 4562; Fujiyoshida-shi; Yamanashi; 403-0005 Japan
Microbial Ecology Laboratory; Biotechnology and Prototype Unit; FES Iztacala; UNAM; Mexico City; 54090 Mexico
Department of Biology; University of Graz; Universitätsplatz 2; Graz; 8010 Austria
Acari Ameronothrus morphology Cytochrome Oxidase I (COI) gene urban environment SEM

Abstract

A species of oribatid mite, Ameronothrus maculatus (Michael, 1882), was collected from moss growing on the building of the Cathédrale Notre-Dame de Paris. This species of Ameronothridae is usually found in coastal Holarctic environments. The specimens were studied by Scanning Electron Microscope and could be clearly assigned to this taxon. This population was first discovered by F. Grandjean approximately 50 years ago, and the present record demonstrates that it has persisted despite its habitat being a tourist destination visited by over 14 million people annually. The record of this species far upstream and on anthropogenic structures is rare but not out of the ordinary in Northern Europe where its distribution can reach far beyond the edges of the estuaries. For further confirmation, we obtained DNA sequences for the COI gene (1554 bp, LC848687), and they were almost identical to those of an earlier found and sequenced specimen of A. maculatus from Germany, differing by only a single base. As supplemental information on A. maculatus from Paris, the region includes whole nucleic ribosomal RNA genes (18S, 5.8S, and 28S, LC848688), partial elongation factor 1 alpha (LC848689), and the complete nucleotide sequence of mitochondrion were also determined.

 

References

  1. André, H.M., Lebrun, P., Masson, M. & Sartor, F. (1984) On the use of Humerobates rostrolamellatus (ACARI) as an air pollution bioassay monitor. The incidence of SO2-NO2 synergism and of winter temperature. Science of the Total Environment, 39 (1–2), 177–187. https://doi.org/10.1016/0048-9697(84)90034-2
  2. Aoki, J. (2000) Oribatid Mites in Moss Cushions Growing on City Construction. Tokai University Press, Tokyo, 188 pp.
  3. Arribas, P., Andújar, C., Moraza, M.L., Linard, B., Emerson, B.C. & Vogler, A.P. (2020) Mitochondrial metagenomics reveals the ancient origin and phylodiversity of soil mites and provides a phylogeny of the Acari. Molecular Biology and Evolution, 37 (3), 683–694. https://doi.org/10.1093/molbev/msz255
  4. Aubert, M. (1929) Notre-Dame de Paris, Sa place dans l’architecture de XIIe au XIVe siècle. 2nd Edition, Librarie Renouard, Paris, 172 pp.
  5. Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M. & Stadler, P.F. (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69 (2), 313–319. https://doi.org/10.1016/j.ympev.2012.08.023
  6. Bianchini, A. (2019) The 850th anniversary of Notre Dame de Paris. Embassy of France in Japan. [in Japanese] Available from: https://jp.ambafrance.org/IMG/pdf/Notre_Dame_de_Paris_2013_japonais.pdf?11932/f1b80dec9e0d9f05db7c9d5fbdd2
  7. a3de5a843f9 (accessed 10 September 2024)
  8. Borrus, K. (2019) Notre Dame de Paris: A Celebration of the Cathedral. Hachette UK, London, 128 pp.
  9. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. & Madden, T.L. (2009) BLAST+: architecture and applications. BMC Bioinformatics, 10 (1), 1–9. https://doi.org/10.1186/1471-2105-10-421.
  10. Cathédrale Notre-Dame de Paris (2024) Cathédrale Notre-Dame de Paris. Available from: https://paiement.notredamedeparis.fr/ (accessed 10 September 2024)
  11. Chen, S., Zhou, Y., Chen, Y. & Gu, J. (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34 (17), i884–i890. https://doi.org/10.1093/bioinformatics/bty560
  12. Darriba, D., Posada, D., Kozlov, A.M., Stamatakis, A., Morel, B. & Flouri, T. (2020) ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution, 37 (1), 291–294. https://doi.org/10.1093/molbev/msz189
  13. Donath, A., Jühling, F., Al-Arab, M., Bernhart, S.H., Reinhardt, F., Stadler, P.F., Middendorf, M. & Bernt, M. (2019) Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Research, 47 (20), 10543–10552. https://doi.org/10.1093/nar/gkz833
  14. Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39 (4), 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  15. Flouri, T., Izquierdo-Carrasco, F., Darriba, D., Aberer A.J., Nguyen, L.T., Minh, B.Q., von Haeseler, A. & Stamatakis, A. (2014) The Phylogenetic Likelihood Library. Systematic Biology, 64 (2), 356–362. https://doi.org/10.1093/sysbio/syu084
  16. Giraud, C. (2013) Notre-dame de Paris 1163-2013: Actes du Colloque Scientifique Tenu au Collège des Bernardins, à Paris, du 12 au 15 Décembre 2012 (History of the Christian Church). Brepols, Turnhout, 658 pp. https://doi.org/10.1484/M.BOOKS.6.09070802050003050409030708
  17. Hugo, V. (1931 [2023]) Notre-Dame de Paris (The Hunchback of Notre Dame) translated by Hapgood, I. F. Gutenberg e-book Notre-Dame de Paris, (Most recently updated) April 15, 2023. Available from: https://www.gutenberg.org/files/2610/2610-h/2610-h.htm (accessed 10 September 2024)
  18. Johnson, K.P., Yoshizawa, K. & Smith, V.S. (2004) Multiple origins of parasitism in lice. Proceedings of the Royal Society B, 271, 1771–1776. https://doi.org/10.1098/rspb.2004.2798
  19. Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35 (21), 4453–4455. https://doi.org/10.1093/bioinformatics/btz305
  20. Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33 (7), 1870–1874. https://doi.org/10.1093/molbev/msw054
  21. Laslett, D. & Canback, B. (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Research, 32 (1), 11–16. https://doi.org/10.1093/nar/gkh152
  22. Laslett, D. & Canback, B. (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics, 24 (2), 172–175. https://doi.org/10.1093/bioinformatics/btm573
  23. Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F. & Hofacker, I.L. (2011) ViennaRNA Package 2.0. Algorithms for molecular biology, 6, 1–14. https://doi.org/10.1186/1748-7188-6-26
  24. McGinnis, S. & Madden, T.L. (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 32 (Web Server), W20–W25. https://doi.org/10.1093/nar/gkh435
  25. Meng, G., Li, Y., Yang, C. & Liu, S. (2019) MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research, 47 (11), e63–e63. https://doi.org/10.1093/nar/gkz173
  26. Michael A.D. (1882) Further notes on British Oribatidae. Journal of the Royal Microscopical Society, 2, 1–18. https://doi.org/10.1111/j.1365-2818.1882.tb00175.x
  27. Pfingstl, T., Hiruta, S.F., Bardel-Kahr, I., Obae, Y. & Shimano, S. (2022) Another mite species discovered via social media - Ameronothrus retweet sp. nov. (Acari, Oribatida) from Japanese coasts, exhibiting an interesting sexual dimorphism. International Journal of Acarology, 48, 348–358. https://doi.org/10.1080/01647954.2022.2074538
  28. Pfingstl, T., Hiruta, S.F. & Shimano, S. (2024) Mitochondrial metagenomics reveal the independent colonization of the world’s coasts by intertidal oribatid mites (Acari, Oribatida, Ameronothroidea). Scientific Reports, 14 (1), 11634. https://doi.org/10.1038/s41598-024-59423-7
  29. Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3), 539–542. https://doi.org/10.1093/sysbio/sys029
  30. Schubart (1975) Morphologische Grundlagen für die Klärung der Verwandtschaftsbeziehungen innerhalb der Milbenfamilie Ameronothridae (Acari, Oribatei). Zoologica, 123, 23–91.
  31. Schulte, G. (1976) Zur Nahrungsbiologie einer terrestrischen und marinen Hornmilbenfamilie (Acari, Oribatei, Ameronothridae). Pedobiologia, 16, 332–352. https://doi.org/10.1016/S0031-4056(23)02188-1
  32. Schulte, G., Schuster, R. & Schubart, H. (1975) Zur Verbreitung und Ökologie der Ameronothriden (Acari, Oribatei) in terrestrischen, limnischen und marinen Lebensräumen. Veröffentlichungen des Institutes für Meeresforschung Bremerhaven, 15, 359–385.
  33. Schuster, R. (1986) Bodenbewohnende Milben (Acari) aus Niedersachsen und anderen Regionen Deutschlands (BRD). Braunschweiger Naturkunde Schriften, 2 (3), 519–525.
  34. Strenzke, K. (1952) Untersuchungen über die Tiergemeinschaften des Bodens: Die Oribatiden und ihre Synusien in den Böden Norddeutschlands. Zoologica Stuttgart, 104, 1–173.
  35. Subías, L.S. (2004) Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes: Oribatida) del mundo (excepto fósiles). Graellsia, 60, 3–305. (número extraordinario). https://doi.org/10.3989/graellsia.2004.v60.iExtra.218
  36. Subías, L.S. (2024) Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes, Oribatida) del mundo (except fósiles). Updated version of Subías (2004). Available from: http://bba.bioucm.es/cont/docs/RO_1.pdf (accessed 10 September 2024)
  37. Travé, J. (1963) Écologie et biologie des Oribates (Acariens) saxicoles et arboricoles. Vie et Milieu, suppl. 14, 1–268.
  38. UNESCO (1992–2024) Paris, rives de la Seine. UNESCO Centre du patrimoine mondial 1992–2024. Available from: https://whc.unesco.org/fr/list/600 (accessed 10 September 2024)
  39. Weigmann, G. & Kratz, W. (1987) Oribatid mites in urban zones of West Berlin. Biology and Fertility of Soils, 3, 81–84. https://doi.org/10.1007/BF00260583