Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-12-23
Page range: 106-121
Abstract views: 116
PDF downloaded: 42

Checklist of oribatid mites (Acari: Oribatida) from peatlands in the United States with notes on oribatid mites from a bog in Minnesota

Department of Biology; University of Western Ontario; London; ON; N6A 5B7; Canada; Department of Biology; Algoma University; Sault Ste Marie; ON; P6A 2G4; Canada
Department of Biology; University of Western Ontario; London; ON; N6A 5B7; Canada
Acari Sphagnum fen soil wetland biodiversity SPRUCE experiment

Abstract

Peatlands are important ecosystems for carbon storage worldwide and often contain unique species. Oribatid mites are the dominant soil arthropods in terrestrial systems like peatlands, where they show high diversity, yet are under-sampled. To create a checklist of oribatid mite species from peatlands in the U.S., we collected a total of 53 peat-soil samples between 2015 and 2020 from a peatland located at the Marcell Experimental Forest in Minnesota, U.S. that yielded an assemblage of 27 families, 43 genera and 49 species; species richness estimates range between 56–102 species. We compiled a final checklist with data from previous studies of American peatlands available online up until July 2024 that revealed an additional 107 species for a total of 156 species distributed in 83 genera and 27 families known from peatlands in the U.S. From our samples, Punctoribates palustris is present in the most states (N=6), and is known to be associated with Sphagnum mosses in North America. Other common peatland species such as Eniochthonius mahunkai, Mainothrus badius and Limnozetes lustrum were also abundant at our site. However, we also found species typical of drier environments (e.g., dry forests, dry montane regions, canopy habitats) such as Eueremaeus nr. proximus, Scapheremaeus palustris, and Cepheus corae. Thus, our results reinforce the idea that peatlands may have a specific subset of species that are common to these ecosystems, but that in general many different species can be occasionally found in peatlands.

 

References

  1. Banks, N. (1895) Some acarians from a Sphagnum swamp. Journal of the New York Entomological Society, 3 (3), 128–130.
  2. Barreto, C. (2021) Diversity and drivers of oribatid mites (Acari: Oribatida) in boreal peatlands. PhD thesis, Western University, London, ON, 235 pp.
  3. Barreto, C., Branfireun, B.A., McLaughlin, J.W. & Lindo, Z. (2021) Responses of oribatid mites to warming in boreal peatlands depend on fen type. Pedobiologia, 89, 150772. https://doi.org/10.1016/j.pedobi.2021.150772
  4. Barreto, C. & Lindo, Z. (2021) Checklist of oribatid mites (Acari: Oribatida) from two contrasting boreal fens: an update on oribatid mites of Canadian peatlands. Systematic and Applied Acarology, 26 (5), 866–884. https://doi.org/10.11158/saa.26.5.4
  5. Barreto, C. & Lindo, Z. (2018) Drivers of decomposition and the detrital invertebrate community differ across a hummock-hollow microtopology in Boreal peatlands. Écoscience, 25 (1), 39–48. https://doi.org/10.1080/11956860.2017.1412282
  6. Barreto, C., Conceição, P.H.S., de Lima, E.C.A., Stievano, L.C., Zeppelini, D., Kolka, R.K., Hanson, P.J. & Lindo, Z. (2023) Large-scale experimental warming reduces soil biodiversity through peatland drying. Frontiers in Environmental Sciences, 11, 1153683. https://doi.org/10.3389/fenvs.2023.1153683
  7. Barreto, C., Buchkowski, R.W. & Lindo, Z. (2024) Restructuring of soil food webs reduces carbon storage potential in boreal peatlands. Soil Biology and Biochemistry, 193, 109413. https://doi.org/10.1016/j.soilbio.2024.109413
  8. Behan-Pelletier, V. & Lindo, Z. (2023) Oribatid mites. Biodiversity, taxonomy and ecology. Taylor and Francis, Boca Raton, Florida, 508 pp.
  9. Behan, V. (1978) Diversity, distribution and feeding habits of North American Arctic soil Acari. PhD thesis, McGill University, Montreal, Quebec, 428 pp.
  10. Behan‐Pelletier, V.M. (1989) Limnozetes (Acari: Oribatida: Limnozetidae) of Northeastern North America. The Canadian Entomologist, 121, 453–506.
  11. Behan-Pelletier, V.M. (1993) Eremaeidae (Acari: Oribatida) of North America. Memoirs of the Entomological Society of Canada, 168, 1–193.
  12. Behan-Pelletier, V.M. (1997) The semiaquatic genus Tegeocranellus (Acari: Oribatida: Ameronothroidea) of North and Central America. The Canadian Entomologist, 129, 537–577. https://doi.org/10.4039/Ent129537-3
  13. Behan-Pelletier, V.M. & Bissett, B. (1994) Oribatida of Canadian peatlands. Memoirs of the Entomological Society of Canada, 169, 73–88. https://doi.org/10.4039/entm126169073-1
  14. Behan-Pelletier, V.M. & Eamer, B. (2003) Zetomimidae (Acari: Oribatida) of North America. In: Smith, I.M. (Ed.), An acarological tribute to David R. Cook. Indira Publishing House, Michigan, pp. 21–56.
  15. Behan-Pelletier, V.M. & Lindo, Z. (2019) Checklist of oribatid mites (Acari: Oribatida) of Canada and Alaska. Zootaxa, 4666 (1), 1–180. https://doi.org/10.11646/zootaxa.4666.1.1
  16. Belanger, S.D. (1976) The microarthropod community of Sphagnum moss with emphasis on the Oribatei. Unpublished MSc thesis, State University of New York, Syracuse, New York, 80 pp.
  17. Bragazza, L., Parisod, J., Buttler, A. & Bardgett, R.D. (2013) Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nature Climate Change, 3, 273–277. https://doi.org/10.1038/nclimate1781
  18. Donaldson, G.M. (1996) Oribatida (Acari) associated with three species of Sphagnum at Spruce Hole Bog, New Hampshire, U.S.A. Canadian Journal of Zoology, 74 (9), 1706–1712. https://doi.org/10.1139/z96-188
  19. Fischer, B.M., Schatz, H. & Maraun, M. (2010) Community structure, trophic position and reproductive mode of soil and bark-living oribatid mites in an alpine grassland ecosystem. Experimental and Applied Acarology, 52, 221–237. https://doi.org/10.1007/s10493-010-9366-8
  20. Gergócs, V. & Hufnagel, L. (2016) The effect of microarthropods on litter decomposition depends on litter quality. European Journal of Soil Biology, 75, 24–30. https://doi.org/10.1016/j.ejsobi.2016.04.008
  21. Gorham, E. (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1 (2), 182–195. https://doi.org/10.2307/1941811
  22. Griffiths, N.A., Hanson, P.J., Ricciuto, D.M., Iversen, C.M., Jensen, A.M., Malhotra, A., McFarlane, K.J., Norby, R.J., Sargsyan, K., Sebestyen, S.D., Shi, X., Walker, A.P., Ward, E.J., Warren, J.M. & Weston, D.J. (2017) Temporal and spatial variation in peatland carbon cycling and implications for interpreting responses of an ecosystem-ccale warming experiment. Soil Science Society of America Journal, 81 (6), 1668–1688. https://doi.org/10.2136/sssaj2016.12.0422
  23. Hanson, P.J., Riggs, J.S., Nettles, W.R., Phillips, J.R., Krassovski, M.B., Hook, L.A., Gu, L., Richardson, A.D., Aubrecht, D.M., Ricciuto, D.M., Warren, J.M. & Barbier, C. (2017) Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere. Biogeosciences, 14, 861–883. https://doi.org//10.5194/bg-14-861-2017
  24. Jacot, A.P. (1930) Oribatid mites of the subfamily Phthiracarinae of the Northeastern United States. Proceedings of the Boston Society of Natural History, 39 (6), 33–42.
  25. Jacot, A.P. (1937) Journal of North-American moss-mites. Journal of the New York Entomological Society, (45), 353–375.
  26. Jacot, A.P. (1939) Reduction of spruce and fir litter by minute animals. Journal of Forestry, 37 (11), 858–860.
  27. Jones, M.C. & Yu, Z. (2010) Rapid deglacial and early Holocene expansion of peatlands in Alaska. The Proceedings of the National Academy of Sciences, 107 (16), 7347–7352. https://doi.org/10.1073/pnas.0911387107
  28. Kolka, R.K., Sebestyen, S.D., Verry, E.S. & Brooks, K.N. (2011) Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. CRC Press, Boca Raton, Florida, 512 pp.
  29. Kolka, R., Bridgham, S.C. & Ping, C.-L. (2016) Soils of peatlands: Histosols and gelisols. In: Vepraskas, M.J & Craft, C.L. (Eds.), Wetlands soils: genesis, hydrology, landscapes and classification. CRC Press/Lewis Publishing, Boca Raton, Florida, pp. 277–309.
  30. Krassovski, M.B., Riggs, J.S., Hook, L.A., Nettles, R., Hanson, P.J. & Boden, T.A. (2015) A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment. Geoscientific Instrumentation, Methods and Data Systems, 4 (2), 203–213. https://doi.org/10.5194/gi-4-203-2015
  31. Laiho, R., Silvan, N., Cárcamo, H. & Vasander, H. (2001) Effects of water level and nutrients on spatial distribution of soil mesofauna in peatlands drained for forestry in Finland. Applied Soil Ecology, 16 (1), 1–9. https://doi.org/10.1016/S0929-1393(00)00103-7
  32. Lehmitz, R. (2014) The oribatid mite community of a German peatland in 1987 and 2012 – effects of anthropogenic desiccation and afforestation. Soil Organims, 86 (2), 131–145.
  33. Lehmitz, R., Haase, H., Otte, V. & Russell, D. (2020) Bioindication in peatlands by means of multi-taxa indicators (Oribatida, Araneae, Carabidae, vegetation). Ecological Indicators, 109, 105837. https://doi.org/10.1016/j.ecolind.2019.105837
  34. Lindo, Z. (2015) Warming favours small-bodied organisms through enhanced reproduction and compositional shifts in belowground systems. Soil Biology and Biochemistry, 91, 271–278. https://doi.org/10.1016/j.soilbio.2015.09.003
  35. Maraun, M., Caruso, T., Hense, J., Lehmitz, R., Mumladze, L., Murvanidze, M., Nae, I., Schulz, J., Seniczak, A. & Scheu, S. (2019) Parthenogenetic vs. sexual reproduction in oribatid mite communities. Ecology and Evolution, 9 (12), 7324–7332. https://doi.org/10.1002/ece3.5303
  36. Markkula, I., Cornelissen, J.H.C. & Aerts, R. (2019) Sixteen years of simulated summer and winter warming have contrasting effects on soil mite communities in a sub-Arctic peat bog. Polar Biology, 42, 581–591. https://doi.org/10.1007/s00300-018-02454-4
  37. Mickler, R.A. (2021) Carbon emissions from a temperate coastal peatland wildfire: contributions from natural plant communities and organic soils. Carbon Balance Management, 16, 26. https://doi.org/10.1186/s13021-021-00189-0
  38. Minasny, B., Berglund, Ö., Connolly, J., Hedley, C., de Vries, F., Gimona, A., Kempen, B., Kidd, D., Lilja, H., Malone, B., McBratney, A., Roudier, P., O’Rourke, S., Rudiyano, Padarian, J., Poggio, L., ten Caten, A., Thompson, D., Tuve, C. & Widyatmanti, W. (2019) Digital mapping of peatlands – A critical review. Earth-Science Reviews, 196, 102870. https://doi.org/10.1016/j.earscirev.2019.05.014
  39. Minnesota Scientific and Natural Areas – Patterned Peatlands. Available from: https://www.dnr.state.mn.us/snas/peatlands.html#:~:text=At%20over%206%20million%20acres,expansiveness%20and%20spectacularly%20patterned%20landscape (accessed 1 November 2022)
  40. Minor, M.A., Ermilov, S.G. & Philippov, D. (2019) Hydrology-driven environmental variability determines abiotic characteristics and Oribatida diversity patterns in a Sphagnum peatland system. Experimental and Applied Acarology, 77, 43–58. https://doi.org/10.1007/s10493-018-0332-1
  41. Minor, M.A., Ermilov, S.G., Philippov, D.A. & Prokin, A.A. (2016) Relative importance of local habitat complexity and regional factors for assemblages of oribatid mites (Acari: Oribatida) in Sphagnum peat bogs. Experimental and Applied Acarology, 70, 275–286. https://doi.org/10.1007/s10493-016-0075-9
  42. Mumladze, L., Murvanidze, M. & Behan-Pelletier, V. (2013) Compositional patterns in Holarctic peat bog inhabiting oribatid mite (Acari: Oribatida) communities. Pedobiologia, 56 (1), 41–48. https://doi.org/10.1016/j.pedobi.2012.10.001
  43. National Wetlands Working Group (1997) The Canadian wetland classification system. Wetlands Research Centre, Waterloo, Ontario, 68 pp.
  44. Nichols, D.S. (1998) Temperature of upland and peatland soils in a north central Minnesota forest. Canadian Journal of Soil Science, 78 (3), 493–509.
  45. Norby, R.J., Childs, J., Hanson, P.J. & Warren, J.M. (2019) Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. Ecology and Evolution, 9 (22), 12571–12585. https://doi.org/10.1002/ece3.5722
  46. Norton, R.A. & Behan-Pelletier, V.M. (2007) Eniochthonius mahunkai sp. n. (Acari: Oribatida: Eniochthoniidae), from North American peatlands, with a redescription of Eniochthonius and a key to North American species. Acta Zoologica Academiae Scientiarum Hungaricae, 53 (4), 295–333.
  47. Norton, R.A., Ermilov, S.G. & Miko, L. (2022) Kunstidamaeus arthurjacoti sp. nov. (Oribatida, Damaeidae), first report of the genus in North America. Systematic & Applied Acarology, 27 (3), 482–496. https://doi.org/10.11158/saa.27.3.7
  48. Norton, R.A. & Behan-Pelletier, V.M. (2009) Suborder Oribatida. In: Krantz, G.W. & Walter, D.E. (Eds.), A Manual of Acarology, 3rd Edition. Texas Tech University Press, Lubbock, Texas, pp. 430–564.
  49. Norton, R.A., Kethley, J.B., Johnston, D.E. & OConnor, B.M. (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch, D.L. & Ebbert, M.A. (Eds.), Evolution and Diversity of Sex Ratio in Insects and Mites. Chapman & Hall Publ., New York, pp. 8–99.
  50. Norton, R.A. & Palmer, S.C. (1991) The distribution, mechanisms and evolutionary significance of parthenogenesis in oribatid mites. In: Schuster, R. & Murphy, P.W. (Eds.), The Acari. Chapman and Hall, London, pp. 107–136.
  51. Norton, R.A. & Sidorchuk, E.A. (2014) Collohmannia johnstoni n. ap. (Acari, Oribatida) from West Virginia (U.S.A.), including description of ontogeny, setal variation, notes on biology and systematics of Collohmanniidae. Acarologia, 54 (3), 271–334. https://doi.org/10.1051/acarologia/20142134
  52. Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & Wagner, H. (2019) vegan: community ecology package.
  53. Palmer, S.C. (1990) Thelytokous parthenogenesis and genetic diversity in nothroid Mites. Unpublished PhD thesis, State University of New York, Syracuse, NY, 153 pp.
  54. Palmer, S.C. & Norton, R.A. (1990) Further experimental proof of thelytokous parthenogenesis in oribatid mites (Acari: Oribatida: Desmonomata). Experimental and Applied Acarology, 8, 149–159.
  55. Palmer, S.C. & Norton, R.A. (1992) Genetic diversity in thelytokous oribatid mites (Acari, Acariformes: Desmonomata). Biochemical Systematics and Ecology, 20 (3), 219–231.
  56. Perala, D.A. & Verry, E.S. (2011) Forest management practices and silviculture. In: Kolka, R.K., Sebestyen, S.D., Verry, E.S. & Brooks, K.N. (Eds.), Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest, CRC Press, Boca Raton, Florida, pp. 371–400.
  57. Petersen, H. & Luxton, M. (1982) A comparative analysis of soil fauna populations and their tole in decomposition processes. Oikos, 39 (3), 288–388.
  58. R Core Team (2020) R: A language and environment for statistical computing. Version 4.0. R Foundation for Statistical Computing, Vienna. [software, https://www.R-project.org/]
  59. Sánchez‑Chávez, D.I., Rodríguez‑Zaragoza, S., Velez, P., Cabirol, N. & Ojeda, M. (2023) Fungal feeding preferences and molecular gut content analysis of two abundant oribatid mite species (Acari: Oribatida) under the canopy of Prosopis laevigata (Fabaceae) in a semi‑arid land. Experimental and Applied Acarology, 89, 417–432. https://doi.org/10.1007/s10493-023-00790-7
  60. Schatz, H. (2004) Diversity and global distribution of oribatid mites (Acari, Oribatida) – evaluation of the present state of knowledge. Phytophaga, 19, 485–500.
  61. Sebestyen, S.D., Dorrance, C., Olson, D.M., Verry, E.S., Kolka, R.K., Elling, A.E. & Kyllander, R. (2011) Long-term monitoring sites and trends at the Marcell experimental Forest. In: Kolka, R.K., Sebestyen, S.D., Verry, E.S. & Brooks, K.N. (Eds.), Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. CRC Press, Boca Raton, Florida, pp. 16–71.
  62. Seniczak, A, Seniczak, S., Iturrondobeitia, J.C., Solhøy, T. & Flatberg, K.I. (2020) Diverse Sphagnum mosses support rich moss mite communities (Acari, Oribatida) in mires of Western Norway. Wetlands, 40, 1339–1351. https://doi.org/10.1007/s13157-019-01236-w
  63. Silvan, N., Laiho, R. & Vasander, H. (2000) Changes in mesofauna abundance in peat soils drained for forestry. Forest Ecology and Management, 133 (1–2), 127–133. https://doi.org/10.1016/S0378-1127(99)00303-5
  64. Soil Survey Staff (1999) Soil Taxonomy: a basic system of soil classification for making and interpreting soil surveys. United States Department of Agriculture, Washington, D.C., Agriculture Handbook, 436, 1–872.
  65. Starý, J. (2006) Contribution to the knowledge of the oribatid mite fauna (Acari: Oribatida) of peat bogs in Bohemian forest. Silva Gabreta, 12 (1), 35–47.
  66. Subías, L.S. (2022) Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes: Oribatida) del mundo (Excepto Fósiles). Sociedad Entomológica Aragonesa, Zaragoza, Monografías electrónicas S.E.A., 12, 1–538.
  67. Verry E.S., Bay, R.R. & Boelter, D.H. (2011) Establishing the Marcell Experimental Forest: Threads in Time In: Kolka, R.K., Sebestyen, S.D., Verry, E.S. & Brooks, K.N. (Eds.), Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest, CRC Press, Boca Raton, Florida, pp. 1–13.
  68. Wallace, A.R. (1876) The Geographical Distribution of Animals: with a study of the relations of living and extinct faunas as elucidating the past of the earth’s surface. MacMillan, London, 110 pp.
  69. Walker, A.P., Carter, K.R., Gu, L., Hanson, P.J., Malhotra, A., Norby, R.J., Sebestyen, S.D., Wullschleger, S.D. & Weston, D.J. (2017) Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog. Journal of Geophysical Research: Biogeosciences, 122 (5), 1078–1097. https://doi.org/10.1002/2016jg003711
  70. Wickings, K. & Grandy, A.S. (2011) The oribatid mite Scheloribates moestus (Acari: Oribatida) alters litter chemistry and nutrient cycling during decomposition. Soil Biology and Biochemistry, 43 (2), 351–358. https://doi.org/10.1016/j.soilbio.2010.10.023
  71. Xu, J., Morris, P.J., Liu, J. & Holden, J. (2018) PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena, 160, 134–140. https://doi.org/10.1016/j.catena.2017.09.010