Skip to main content Skip to main navigation menu Skip to site footer
Type: Front matter
Published: 2024-12-31
Page range: 5-10
Abstract views: 112
PDF downloaded: 80

Lower Cretaceous terrestrial outcrops with fossil insects from Lebanon and China

State Key Laboratory of Palaeobiology and Stratigraphy; Nanjing Institute of Geology and Palaeontology; Chinese Academy of Sciences; Nanjing; Jiangsu; 210008; China
Faculty of Science II; Natural Sciences Department; Lebanese University; Fanar - El-Matn; PO Box 90656 Jdeideh; Lebanon
State Key Laboratory of Palaeobiology and Stratigraphy; Nanjing Institute of Geology and Palaeontology; Chinese Academy of Sciences; Nanjing; Jiangsu; 210008; China; Faculty of Science II; Natural Sciences Department; Lebanese University; Fanar - El-Matn; PO Box 90656 Jdeideh; Lebanon
Fossil insects Lebanon China flies butterflies beetles bees

References

  1. Azar, D. (2012) Lebanese amber: A “guinness book of records”. Annales Universitatis Paedagogicae Cracoviensis, 111, 44–60.
  2. Azar, D., De La Ferté, C., El Hajj, L., Nel, A. & Maksoud, S. (2019) An exceptional ephemeropteran larva from the Lower Cretaceous dysodiles of Lebanon. Palaeoentomology, 2 (2), 192‒198. https://doi.org/10.11646/palaeoentomology.2.2.9
  3. Azar, D., Gèze, R. & Acra, F. (2010) Chapter 14: Lebanese amber. In: Penney D. (Ed.), Biodiversity of fossils in amber from the major World deposits. Siri Scientific Press: pp. 271–298.
  4. Azar, D. & Nel, A. (2023) The first Early Cretaceous representative of the fly family Tipulidae from the lower Barremian dysodiles of Lebanon (Diptera). Zootaxa, 5396 (1), 58–63. https://doi.org/10.11646/zootaxa.5396.1.11
  5. Barba-Montoya, J., dos Reis, M., Schneider, H., Donoghue, P.C.J. & Yang, Z. (2018) Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. New Phytologist, 218, 819–834. https://doi.org/10.1111/nph.15011
  6. Benton, M.J., Wilf, P. & Sauquet, H. (2022) The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. New Phytologist, 233, 2017–2035. https://doi.org/10.1111/nph.17822.
  7. Botta, P. (1831) Sur la structure géognostique du Liban et de l’Anti‐Liban. Bulletin de la Société Géologique de France, 10, 234–239.
  8. Cai, C.Y., Leschen, R.A.B., Hibbett, D.S., Xia, F.Y. & Huang, D.Y. (2017) Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous. Nature Communications, 8, 14894. https://doi.org/10.1038/ncomms14894
  9. Cai, C.Y., Thayer, M.K., Engel, M.S., Newton, A.F., Ortega-Blanco, J., Wang, B., Wang, X.D. & Huang, D.Y. (2014) Early origin of parental care in Mesozoic carrion beetles. Proceedings of the National Academy of Sciences, 111 (39), 14170–14174. https://doi.org/10.1073/pnas.1412280111
  10. Condamine, F.L., Clapham, M.E. & Kergoat, G.J. (2016) Global patterns of insect diversification: Towards a reconciliation of fossil and molecular evidence? Scientific Reports, 6, 1–13. https://doi.org/10.1038/srep19208
  11. Condamine, F.L., Silvestro, D., Koppelhus, E.B. & Antonelli, A. (2020) The rise of angiosperms pushed conifers to decline during global cooling. Proceedings of the National Academy of Sciences, 117, 28867–28875. https://doi.org/10.1073/pnas.2005571117.
  12. Cordier, M.L. (1808) Sur le dysodile, nouvelle espèce minérale. Journal des Mines, 23, 271–274.
  13. El Hajj, L., Baudin, F., Gèze, R., Cavin, L., Dejax, J., Garcia, G., Horne, D.J., Maksoud, S., Otero, O. & Azar, D. (2021) Dysodiles from the lower Barremian of Lebanon: Insights on the fossil assemblages and the depositional environment reconstruction. Cretaceous Research, 120, 10432. https://doi.org/10.1016/j.cretres.2020.104732
  14. El Hajj, L., Baudin, F., Littke, R., Nader, F.H., Gèze, R., Maksoud, S. & Azar, D. (2019) Geochemical and petrographic analyses of new petroleum source rocks from the onshore Upper Jurassic and Lower Cretaceous of Lebanon. International Journal of Coal Geology, 204, 70–84. https://doi.org/10.1016/j.coal.2019.02.003
  15. Fraas, O. (1878) Geologisches aus dem Libanon. Jahreshefte des Vereins für vaterländische Naturkunde, 34, 257–391.
  16. Friis, E.M., Doyle, J.A., Endress, P.K. & Leng, Q. (2003) Archaefructus–angiosperm precursor or specialized early angiosperm? Trends in Plant Science, 8(8), 369–373. https://doi.org/10.1016/S1360-1385(03)00161-4
  17. Gao, T.P., Shih, C., Rasnitsyn, A.P., Xu, X., Wang, S. & Ren, D. (2013) New transitional fleas from China highlighting diversity of Early Cretaceous ectoparasitic insects. Current Biology, 23, 1261–1266. https://doi.org/10.1016/j.cub.2013.05.040
  18. Gao, T.P., Shih, C.K., Xu, X., Wang, S. & Ren, D. (2012) Mid-Mesozoic flea-like ectoparasites of feathered or haired vertebrates. Current Biology, 22, 732–735. https://doi.org/10.1016/j.cub.2013.05.040
  19. Grimaldi, D. & Engel, M.S. (2005) Evolution of the insects, 1st Edition. New York and Cambridge: Cambridge University Press, xv + 755 pp.
  20. Hakim, M., Huang, D.Y. & Azar, D. (2022) Debris-carrying psocodean nymph from Lebanese amber. Palaeoentomology, 5 (3), 222–225. https://doi.org/10.11646/palaeoentomology.5.3.3
  21. He, H.Y., Wang, X.L., Zhou, Z.H., Wang, F., Boven, A., Shi, G.H. & Zhu, R.X. (2004) Timing of the Jiufotang Formation (Jehol Group) in Liaoning, northeastern China, and its implications. Geophysical Research Letters, 31 (12), L12605. https://doi.org/10.1029/2004GL019790
  22. Huang, D.Y., Engel, M.S., Cai, C.Y., Wu, H. & Nel, A. (2012) Diverse transitional giant fleas from the Mesozoic era of China. Nature, 483, 201–204. https://doi.org/10.1038/nature10839
  23. Janensch, W. (1925) Fische aus dem Dysodil des Wealden vom Libanon. Zeitschrift der Deutschen geologischen gesellschaft (Abhandlungen und Monatsberichte), 76, 54–59.
  24. Labandeira, C.C. (2007) The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Science, 14, 259–275. https://doi.org/10.1111/j.1744-7917.2007.00141.x-i1
  25. Labandeira, C.C. (2014) Why did Terrestrial Insect Diversity not increase during the Angiosperm Radiation? Mid-Mesozoic, Plant-Associated Insect Lineages Harbor Clues. Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life, 261–299. https://doi.org/10.1007/978-3-319-07623-2_13
  26. Langenheim, J.H. (1969) Amber: A botanical inquiry. Science, 163, 1157–1169.
  27. Langenheim, J.H. (2003) Plant resins: chemistry, evolution, ecology, and ethnobotany. Timber Press Inc., Portland: 586 pp.
  28. Li, Q.G., Gao, K.Q., Vinther, J., Shawkey, M.D., Clarke, J.A., D’Alba, L., Meng, Q.J., Briggs, D.E.G. & Prum, R.O. (2010) Plumage color patterns of an extinct dinosaur. Science, 327 (5971), 1369–1372. https://doi.org/10.1126/science.1186290
  29. MacLennan, S.A., Sha, J., Olsen, P.E., Kinney, S.T., Chang, C., Fang, Y., Liu, J., Slibeck, B.B., Chen, E. & Schoene, B. (2024) Extremely rapid, yet noncatastrophic, preservation of the flattened-feathered and 3D dinosaurs of the Early Cretaceous of China. Proceedings of the National Academy of Sciences, 121 (47), e2322875121. https://doi.org/10.1073/pnas.2322875121
  30. Maksoud, S. & Azar, D. (2020) Lebanese amber: Latest updates. Palaeoentomology, 3 (2), 125–155. https://doi.org/10.11646/palaeoentomology.3.2.2
  31. Maksoud, S. & Azar, D. (2022) a new early Barremian amber outcrop from Mount Sannine (Central Lebanon). Palaeoentomology, 5 (1), 71–75. https://doi.org/10.11646/palaeoentomology.5.1.8
  32. Maksoud, S. & Azar, D. (2023) Lebanese amber: A fantastic journey into the time of dinosaurs. Journal of Gems & Gemmology, 25 (4), 136–145.
  33. Maksoud, S., Azar, D., Granier, B. & Gèze, R. (2017) New data on the age of the Lower Cretaceous amber outcrops of Lebanon. Palaeoworld, 26 (2), 331–338. https://doi.org/10.1016/j.palwor.2016.03.003
  34. Maksoud, S., Granier, B.R.C. & Azar, D. (2022) Palaeoentomological (fossil insects) outcrops in Lebanon. Carnets de Géologie, 22 (16), 699‒743. https://doi.org/10.2110/carnets.2022.2216
  35. Meng, J. (2014) Mesozoic mammals of China: Implications for phylogeny and early evolution of mammals. National Science Review, 1, 521–542. https://doi.org/10.1093/nsr/nwu070
  36. Pan, Y.H., Sha, J.G., Zhou, Z.H. & Fürsich, F.T. (2013) The Jehol Biota: Definition and distribution of exceptionally preserved relicts of a continental Early Cretaceous ecosystem. Cretaceous Research, 44, 30–38. https://doi.org/10.1016/j.cretres.2013.03.007
  37. Pan, Y.H., Zheng, W.X., Moyer, A.E., O’Connor, J.K., Wang, M., Zheng, X.T., Wang, X.L., Schroeter, W.R., Zhou, Z.H. & Schweitzer, M.H. (2016) Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis. Proceedings of the National Academy of Sciences, 113 (49), E7900–E7907. https://doi.org/10.1073/pnas.1617168113
  38. Pan, Y.H., Zheng, W.X., Sawyer, R.H., Pennington, M.W., Zheng, X.T., Wang, X.L., Wang, M., Hu, L., O’Connor, J., Zhao, T., Li, Z.H., Schroeter, E.R., Wu, F.X., Xu, X., Zhou, Z.H. & Schweitzer, M.H. (2019) The molecular evolution of feathers with direct evidence from fossils. Proceedings of the National Academy of Sciences, 116 (8), 3018–3023. https://doi.org/10.1073/pnas.1815703116
  39. Poinar, G.O. & Milki, R. (2001) Lebanese amber: the oldest insect ecosystem in fossilized resin. Oregon State University Press, Corvallis, Oregon, 96 pp.
  40. Rasnitsyn, A.P., Maalouf, M., Maalouf, R. & Azar, D. (2022) New Serphitidae and Gallorommatidae (Insecta: Hymenoptera: Microprocta) in the Early Cretaceous Lebanese amber. Palaeoentomology, 5 (2), 120–136. https://doi.org/10.11646/palaeoentomology.5.2.4
  41. Ren, D., Shih, C., Gao, T., Wang, Y. & Yao, Y. (2019) Rhythms of insect evolution: Evidence from the Jurassic and Cretaceous in Northern China. New York: John Wiley & Sons, 736 pp.
  42. Sargent Bray, P. & Anderson, K.B. (2009) Identification of Carboniferous (320 million years old) Class Ic Amber. Science, 326, 132–134. https://doi.org/10.1126/science.1177539
  43. Sun, G., Dilcher, D.L., Zheng, S. & Zhou, Z. (1998) In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. Science, 282 (5394), 1692–1695. https://doi.org/10.1126/science.282.5394.1692
  44. Sun, G., Ji, Q., Dilcher, D.L., Zheng, S., Nixon, K.C. & Wang, X. (2002) Archaefructaceae, a new basal angiosperm family. Science, 296 (5569), 899–904. https://doi.org/10.1126/science.106943
  45. Swisher, C.C., Wang, X., Zhou, Z., Wang, Y., Jin, F., Zhang, J.Y., Xu, X., Zhang, F.C. & Wang, Y. (2002) Further support for a Cretaceous age for the feathered-dinosaur beds of Liaoning, China: New 40Ar/39Ar dating of the Yixian and Tuchengzi Formations. Chinese Science Bulletin, 47, 135–138. https://doi.org/10.1360/02tb9031
  46. Tihelka, E., Jarzembowski, E.A., Azar, D., Huang, D.Y. & Cai, C.Y. (2023) An unusual artematopodid beetle from Early Cretaceous Wealden amber (Coleoptera: Elateroidea: Artematopodidae). Palaeoentomology, 6 (5), 455–458. https://doi.org/10.11646/palaeoentomology.6.5.4
  47. Wang, H.B., Meng, J. & Wang, Y.Q. (2019) Cretaceous fossil reveals a new pattern in mammalian middle ear evolution. Nature, 576 (7785), 102–105. https://doi.org/10.1038/s41586-019-1792-0
  48. Wang, X.L., O’Connor, J.K., Maina, J.N., Pan, Y.H., Wang, M., Wang, Y., Zheng, X.T. & Zhou, Z.H. (2018) Archaeorhynchus preserving significant soft tissue including probable fossilized lungs. Proceedings of the National Academy of Sciences, 115 (45), 11555–11560. https://doi.org/10.1073/pnas.1805803115
  49. Wu, F.Y., Xu, Y.G., Gao, S. & Zheng, J.P. (2008) Lithospheric thinning and destruction of the North China Craton. Acta Petrologicas Sinica, 24, 1145–1174.
  50. Xu, X., Zhou, Z., Dudley, R., Mackem, S., Chuong, C.M., Erickson, G.M. & Varricchio, D.J. (2014) An integrative approach to understanding bird origins. Science, 346 (6215), 1253293. https://doi.org/10.1126/science.1253293
  51. Xu, X., Zhou, Z., Wang, Y. & Wang, M. (2020) Study on the Jehol Biota: recent advances and future prospects. Science China Earth Sciences, 63, 757–773. https://doi.org/10.1007/s11430-019- 9509-3
  52. Yang, S.H., He, H.Y., Jin, F., Zhang, F.C., Wu, Y.B., Yu, Z.Q., Li, Q.L., Wang, M., O’Connor, J.K., Deng, C.L., Zhu, R.X. & Zhou, Z.H. (2020) The appearance and duration of the Jehol Biota: Constraint from SIMS U-Pb zircon dating for the Huajiying Formation in northern China. Proceedings of the National Academy of Sciences, 117 (25), 14299–14305. https://doi.org/10.1073/pnas.1918272117
  53. Zhang, F.C, Kearns, S.L., Orr, P.J., Benton, M.J., Zhou, Z.H., Johnson, D., Xu, X. & Wang, X.L. (2010) Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature, 463 (7284), 1075–1078. https://doi.org/10.1038/nature08740
  54. Zheng, X.T., O’Connor, J., Huchzermeyer, F., Wang, X.L., Wang, Y., Wang, M. & Zhou, Z.H. (2013) Preservation of ovarian follicles reveals early evolution of avian reproductive behaviour. Nature, 495 (7442), 507–511. https://doi.org/10.1038/nature11985
  55. Zhou, Z.H. (2014) The Jehol Biota, an Early Cretaceous terrestrial Lagerstätte: new discoveries and implications. National Science Review, 1 (4), 543–559. https://doi.org/10.1093/nsr/nwu055
  56. Zhou, Z.H., Barrett, P.M. & Hilton, J. (2003) An exceptionally preserved Lower Cretaceous ecosystem. Nature, 421, 807–814. https://doi.org/10.1038/nature01420
  57. Zhou, Z.H., Meng, Q.R., Zhu, R.X. & Wang, M. (2021) Spatiotemporal evolution of the Jehol Biota: Responses to the North China craton destruction in the Early Cretaceous. Proceedings of the National Academy of Sciences, 118 (34), e2107859118. https://doi.org/10.1073/pnas.2107859118
  58. Zhou, Z.H. & Wang, Y. (2017) Vertebrate assemblages of the Jurassic Yanliao Biota and the Early Cretaceous Jehol Biota: Comparisons and implications. Palaeoworld, 26, 241–252 https://doi.org/10.1016/j.palwor.2017.01.002
  59. Zhu, R.X., Yang, J.H. & Wu, F.Y. (2012) Timing of destruction of the North China Craton. Lithos, 149, 51–60. https://doi.org/10.1016/j.lithos.2012.05.013