Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-12-31
Page range: 76-93
Abstract views: 103
PDF downloaded: 0

Quantitative morphology of fossil adephagan beetle larvae including a first record from the Jehol biota does not indicate major diversity losses over time

Ludwig-Maximilians-Universität München; Biocenter; Großhaderner Str. 2; 82152 Planegg-Martinsried; Germany; GeoBio-Center at LMU; Richard-Wagner-Str. 10; 80333 München; Germany
Ludwig-Maximilians-Universität München; Biocenter; Großhaderner Str. 2; 82152 Planegg-Martinsried; Germany; State Key Laboratory of Palaeobiology and Stratigraphy; Nanjing Institute of Geology and Palaeontology; Chinese Academy of Sciences; Nanjing 210008; China
Kreuzbergstr. 90; 66482 Zweibrücken; Germany
Universität Heidelberg; Fakultät für Biowissenschaften; Im Neuenheimer Feld 234; 69120 Heidelberg; Germany
Ludwig-Maximilians-Universität München; Biocenter; Großhaderner Str. 2; 82152 Planegg-Martinsried; Germany; GeoBio-Center at LMU; Richard-Wagner-Str. 10; 80333 München; Germany
Coleoptera Adephaga Cretaceous quantitative morphology biodiversity

Abstract

Coleoptera is a hyper-diverse group of animals with about 400,000 formally described species. Also the morphological diversity of beetles is very high, not only in the adults, but also in the larvae. To understand the evolutionary origin of this enormous diversity, investigations of fossils are crucial, but especially for the larvae such fossil are still scarce. In this study, we present 15 new fossil larvae from different deposits of Cretaceous to Miocene age, which we interpret as larvae of the beetle ingroup Adephaga. Most of these are three-dimensionally preserved and either embedded in amber or silicified. One specimen is a compression fossil, which is very rare for beetle larvae, and represents the first report of an adephagan beetle larva from the Early Cretaceous Jehol biota of China. Of all previously known and new fossil adephagan larvae and of selected extant ones the shapes of the head capsules and mandibles were compared with quantitative morphology methods (elliptic Fourier analysis and principal component analysis). The shapes of the fossil larvae lie all within the morphospace of those of the extant larvae, which indicates that the highest diversity in this aspect is present in the modern fauna, hence no diversity loss occurred. Other lineages of Holometabola show similar patterns, with indications of larval diversifications already in the Cretaceous, further specialisation afterwards, and no major losses. This pattern may be a reason for the enormous species richness of certain holometabloan groups in the modern fauna.

 

References

  1. Beutel, R. & van Vondel, B. (2024) Misidentification of fossil beetle larvae on the subordinal level—Scraptiidae (Polyphaga: Tenebrionoidea) instead of Haliplidae (Adephaga). ResearchGate.
  2. Beutel, R.G., Friedrich, F., Yang, X.K. & Ge, S.Q. (2014) Insect morphology and phylogeny: a textbook for students of entomology. Walter de Gruyter, Berlin, Germany, 516 pp. https://doi.org/10.1515/9783110264043
  3. Beutel, R.G., Xu, C., Jarzembowski, E., Kundrata, R., Boudinot, B.E., McKenna, D.D. & Goczał, J. (2024) The evolutionary history of Coleoptera (Insecta) in the late Palaeozoic and the Mesozoic. Systematic Entomology, 49, 355–388. https://doi.org/10.1111/syen.12623
  4. Braig, F., Haug, J.T., Schädel, M. & Haug, C. (2019) A new thylacocephalan crustacean from the Upper Jurassic lithographic limestones of southern Germany and the diversity of Thylacocephala. Palaeodiversity, 12, 69–87. https://doi.org/10.18476/pale.v12.a6
  5. Casale, A., Di Giulio, A., Marcia, P. & Molinu, A. (2010) The third instar larva of Speomolops sardous Patrizi, a cave-dwelling molopine beetle endemic to Eastern Sardinia, with notes on its habitat (Coleoptera, Carabidae). Italian Journal of Zoology, 77 (2), 159–167. https://doi.org/10.1080/11250000903015182
  6. Gauweiler, J., Haug, C., Müller, P. & Haug, J.T. (2022) Lepidopteran caterpillars in the Cretaceous: were they a good food source for early birds? Palaeodiversity, 15, 45–59. https://doi.org/10.18476/pale.v15.a3
  7. Goczał, J. & Beutel, R.G. (2023) Beetle elytra: evolution, modifications and biological functions. Biology Letters, 19 (3), 20220559. https://doi.org/10.1098/rsbl.2022.0559
  8. Gröhn, C. (2015) Einschlüsse im baltischen Bernstein. Wachholtz Verlag-Murmann Publishers, Kiel, Germany, 424 pp.
  9. Gustafson, G.T., Michat, M.C. & Balke, M. (2020) Burmese amber reveals a new stem lineage of whirligig beetle (Coleoptera: Gyrinidae) based on the larval stage. Zoological Journal of the Linnean Society, 189 (4), 1232–1248. https://doi.org/10.1093/zoolinnean/zlz161
  10. Haug, C., Braig, F. & Haug, J.T. (2023) Quantitative analysis of lacewing larvae over more than 100 million years reveals a complex pattern of loss of morphological diversity. Scientific Reports, 13, 6127. https://doi.org/10.1038/s41598-023-32103-8
  11. Haug, J.T. & Haug, C. (2017) Species, populations and morphotypes through time—challenges and possible concepts. BSGF—Earth Sciences Bulletin, 188, 20. https://doi.org/10.1051/bsgf/2017181
  12. Haug, J.T. & Haug, C. (2021) A 100 million-year-old armoured caterpillar supports the early diversification of moths and butterflies. Gondwana Research, 93, 101–105. https://doi.org/10.1016/j.gr.2021.01.009
  13. Haug, J.T., Engel, M.S., Mendes dos Santos, P., Haug, G.T., Müller, P. & Haug, C. (2022a) Declining morphological diversity in snakefly larvae during last 100 million years. PalZ, 96, 749–780. https://doi.org/10.1007/s12542-022-00609-7
  14. Haug, J.T., Haug, C., Wang, Y. & Baranov, V.A. (2022b) The fossil record of lepidopteran caterpillars in Dominican and Mexican amber. Lethaia, 55 (3), 1–14. https://doi.org/10.18261/let.55.3.7
  15. Hayashi, M. & Ohba, S.Y. (2018) Mouth morphology of the diving beetle Hyphydrus japonicus (Dytiscidae: Hydroporinae) is specialized for predation on seed shrimps. Biological Journal of the Linnean Society, 125 (2), 315–320. https://doi.org/10.1093/biolinnean/bly113
  16. Hörnschemeyer, T. & Yavorskaya, M. (2016) 5.2 Cupedidae Laporte, 1836. In: Kristensen, N.P. & Beutel, R.G. (Eds), Handbook of Zoology, vol. IV Arthropoda: Insecta. Part 38. Coleoptera, vol. 1: Morphology and Systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim) (2nd edition): 44–48, Walter De Gruyter, Berlin.
  17. Kirejtshuk, A.G. (2020) Taxonomic review of fossil coleopterous families (Insecta, Coleoptera). Suborder Archostemata: superfamilies Coleopseoidea and Cupedoidea. Geosciences, 10 (2), 73. https://doi.org/10.3390/geosciences10020073
  18. Klausnitzer, B. (2003) Käferlarven (Insecta: Coleoptera) in Baltischem Bernstein—Möglichkeiten und Grenzen der Bestimmung. Entomologische Abhandlungen, 61 (1), 103–108.
  19. Kundrata, R., Packova, G. & Hoffmannova, J. (2020) Fossil genera in Elateridae (Insecta, Coleoptera): a Triassic origin and Jurassic diversification. Insects, 11 (6), 394. https://doi.org/10.3390/insects11060394
  20. Lawrence, J.F. (1991) 34 Order Coleoptera. In Stehr, F.W. (1991) Immature Insects, vol. 2, 144–298. Kendall-Hunt Publishing Co., Dubuque, IA, USA.
  21. Li, Y.D., Tihelka, E., Engel, M.S., Xia, F.Y., Huang, D.Y., Zippel, A., Kay Lwin Tun, Haug, G.T., Müller, P. & Cai, C.Y. (2024) Description of adult and larval Loricera from mid-Cretaceous Kachin amber (Coleoptera: Carabidae). Palaeoentomology, 7 (2), 265–276. https://doi.org/10.11646/palaeoentomology.7.2.10
  22. Liu, H., Beutel, R.G., Makarov, K.V., Jarzembowski, E.A., Xiao, C. & Luo, C. (2023a) The first larval record of Migadopinae (Coleoptera: Adephaga: Carabidae) from mid-Cretaceous Kachin amber, northern Myanmar. Cretaceous Research, 142, 105413. https://doi.org/10.1016/j.cretres.2022.105413
  23. Liu, H., Makarov, K.V., Jarzembowski, E.A., Xiao, C. & Luo, C. (2023b) Cretoloricera electra gen. et sp. nov., the oldest record of Loricerini (Coleoptera: Adephaga: Carabidae: Loricerinae) from mid-Cretaceous Kachin amber. Cretaceous Research, 148, 105540. https://doi.org/10.1016/j.cretres.2023.105540
  24. McKenna, D.D., Shin, S., Ahrens, D., Balke, M., Beza-Beza, C., Clarke, D.J., Donath , A., Escalona, H.E., Friedrich, F., Letsch, H., Liu, S., Maddison, D., Mayer, C., Misof, B., Murin, P.J., Niehuis, O., Peters, R.S., Podsiadlowski, L., Pohl, H., Scully, E.D., Yan, E.V., Zhou, X., Ślipiński, A. & Beutel, R.G. (2019) The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences, 116, 24729–24737. https://doi.org/10.1073/pnas.1909655116
  25. Palmer, A.R., Carvalho, J.C.M., Cook, D.R., O’Neill, K., Petrunkevitch, A. & Sailer, R.I. (1957) Miocene arthropods from the Mojave desert, California. Washington, US Government Printing Office. 294-G, 237–280. https://doi.org/10.3133/pp294G
  26. Prokin, A.A., Makarov, K.V., Ponomarenko, A.G. & Bashkuev, A.S. (2013) New beetle larvae (Coleoptera: Coptoclavidae, Caraboidea, Polyphaga) from the Upper Triassic of Germany. Russian Entomological Journal, 22, 259–274.
  27. Rosová, K., Prokop, J., Hammel, J.U. & Beutel, R.G. (2023) The earliest evidence of Omophroninae (Coleoptera: Carabidae) from mid-Cretaceous Kachin amber and the description of a larva of a new genus. Arthropod Systematics & Phylogeny, 81, 689–704. https://doi.org/10.3897/asp.81.e101374
  28. Schädel, M., Yavorskaya, M. & Beutel, R. (2022) The earliest beetle †Coleopsis archaica (Insecta: Coleoptera)—morphological re-evaluation using Reflectance Transformation Imaging (RTI) and phylogenetic assessment. Arthropod Systematics & Phylogeny, 80, 495–510. https://doi.org/10.3897/asp.80.e86582
  29. Stehr, F.W. (1991) Immature Insects, vol. 2. Kendall-Hunt Publishing Co., Dubuque, IA, USA.
  30. Wang, B., Ponomarenko, A.G. & Zhang, H.C. (2009) A new coptoclavid larva (Coleoptera: Adephaga: Dytiscoidea) from the Middle Jurassic of China, and its phylogenetic implication. Paleontological Journal, 43, 652–659. https://doi.org/10.1134/S0031030109060082
  31. Weitschat, W. & Wichard, W. (2002) Atlas of Plants and Animals in Baltic Amber. Dr. Friedrich Pfeil, München, 256 pp.
  32. Wichard W., Gröhn C. & Seredszus F. (2009) Aquatic insects in Baltic amber. Kessel, Remagen, 336 pp.
  33. Zhang, W.W. (2017) Frozen Dimensions. The Fossil Insects and Other Invertebrates in Amber. Chongqing, Chongqing University Press, 692 pp.
  34. Zhao, X., Zhao, X., Jarzembowski, E.A. & Wang, B. (2019) The first whirligig beetle larva from mid-Cretaceous Burmese amber (Coleoptera: Adephaga: Gyrinidae). Cretaceous Research, 99, 41–45. https://doi.org/10.1016/j.cretres.2019.02.015