Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-02-20
Page range: 61-84
Abstract views: 4561
PDF downloaded: 1910

Genetic and morphological variation analyses of Dryophytes japonicus (Anura, Hylidae) with description of a new species from northeastern Japan

Department of Science Education; Aichi University of Education; 1 Hirosawa; Igaya; Kariya; Aichi 448–8542; JAPAN.
Graduate School of Human and Environmental Studies; Kyoto University; Sakyo; Kyoto 606–8501; JAPAN.
Department of Science Education; Aichi University of Education; 1 Hirosawa; Igaya; Kariya; Aichi 448–8542; JAPAN.
Amphibia northeastern Japan Dryophytes japonicus thigh pattern mitochondrial DNA phylogeny nuclear DNA phylogeny

Abstract

Japanese tree frog, Dryophytes japonicus, formerly known as Hyla japonica, is known to include several geographic groups recognized in mitochondrial phylogeny. By analyzing genetic and morphological variations in a large number of individuals of Dryophytes, we studied their taxonomic relationships. A mitochondrial DNA phylogeny was consistent with previous studies in that a high molecular divergence existed between populations from northeastern Japan and Sakhalin (Clade A) and those from southwestern Japan and Korea (Clade B). Nuclear DNA analyses based on SNP data also support such separation, whereas hybrid populations were found at some localities near the border of mitochondrial clades in Honshu Island, forming a hybrid zone. The width of hybrid zone was estimated to be narrow (approx. 25 km) and the migration rates into/beyond it were relatively low. Those results indicate that two genetic groups have long been parapatrically maintained with a narrow hybrid zone in Honshu Island. We examined syntypes of Hyla japonica and designated lectotypes. In adult morphology, the clades could be differentiated mainly by the pattern of rear of thigh, and the lectotypes proved to be Clade B. From these results, we describe the frogs of Clade A as a new species, D. leopardus sp. nov., distinct from D. japonicus.

 

References

  1. Aihara, I., Kitahata, H., Aihara, K. & Yoshikawa, K. (2006) Periodic rhythm and anti-phase synchronization in calling behaviors of Japanese rain frogs. Mathematical Engineering Technical Reports, 2006-35, 1–10. [https://www.keisu.t.u-tokyo.ac.jp/data/2006/METR06-35.pdf]
  2. Basarukin, A.M. (1982) Herpetofauna of the Kunashir Island. Ekologo-Faunisticheskie Issledovaniya Nekotorykh Pozvonochnykh Sakhalina i Kurilskikh Ostrovov, Vladivostok, 1982, 3–15.
  3. Basarukin, A.M. (1984) On reproduction of Hyla japonica on Sakhalin.: Ekologo-Fenologicheskie Issledovaniya v Sakhalinskoi Oblasti, Vladivostok, 1984, 123–126.
  4. Beheld, J.L. & King, F.W. (1979) The Audubon Society Field Guide to North American Reptiles and Amphibians. Alfred A. Knopf, Inc., New York, New York, 743 pp.
  5. Bolger, A.M., Lohse, M. & Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  6. von Bedriaga, J. (1889) Die Lurchfauna Europa's I. Anura. Froschlurche. Bulletin de la Société impériale des naturalistes de Moscou, Nouvelle Serie, 3, 210–422 + 466–622. [https://www.biodiversitylibrary.org/item/106827#page/497/mode/1up]
  7. Borzée, A., Messenger, K.R., Chae, S., Andersen, D., Groffen, J., Kim, Y.I., An, J., Othman, S.N., Ri, K., Nam, T.Y., Bae, Y., Ren, J.-L., Li, J.-T., Chuang, M.-F., Yi, Y., Shin, Y., Kwon, T., Jang, Y. & Min, M.-S. (2020) Yellow Sea mediated segregation between North East Asian Dryophytes species. PLoS ONE, 15, e0234299. https://doi.org/10.1371/journal.pone.0234299
  8. Borzée, A., Fong, J.J., Nguyen, H.Q. & Jang, Y. (2020) Large-scale hybridisation as an extinction threat to the Suweon treefrog (Hylidae: Dryophytes suweonensis). Animals, 10, 764. https://doi.org/10.3390/ani10050764
  9. Camerano, L. (1879) Di alcune specie di anfibii anuri esistenti nelle collezioni del R. Museo Zoologico di Torino. Atti della Reale Accademia delle scienze di Torino, 14, 886–897.
  10. Catchen, J., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J. (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes, Genomes, Genetics, 1, 171–182. https://doi.org/10.1534/g3.111.000240
  11. Derryberry, E.P., Derryberry, G.E., Maley, J.M. & Brumfield, R.T. (2014) HZAR: Hybrid zone analysis using an R software package. Molecular Ecology Resources, 14, 652–663. https://doi.org/10.1111/1755-0998.12209
  12. Duellman, W.E. (2001) Hylid Frogs of Middle America. Society for the Study of Amphibians and Reptiles, Contributions to Herpetology No. 18. 2nd Edition. Society for the Study of Amphibians and Reptiles, Marceline, Missouri, xvi + x + 1159 + 94 (unnumbered pages of pls.) pp., illustrations (some color), maps.
  13. Duellman, W.E., Marion, A.B. & Hedges, S.B. (2016) Phylogenetics, classification, and biogeography of the treefrogs (Amphibia: Anura: Arboranae). Zootaxa, 4104 (1), 1–109. https://doi.org/10.11646/zootaxa.4104.1.1
  14. Dufresnes, C., Litvinchuk, S.N., Borzée, A., Jang, Y., Li, J.-T., Miura, I., Perrin, N. & Stöck, M. (2016) Phylogeography reveals an ancient cryptic radiation in East-Asian tree frogs (Hyla japonica group) and complex relationships between continental and island lineages. BMC Evolutionary Biology, 16, 253. https://doi.org/10.1186/s12862-016-0814-x
  15. Dufresnes, C., Nicieza, A.G., Litvinchuk, S.N., Rodrigues, N., Jeffries, D.L., Vences, M., Perrin, N. & Martínez-Solano, Í. (2020a) Are glacial refugia hotspots of speciation and cytonuclear discordances? Answers from the genomic phylogeography of Spanish common frogs. Molecular Ecology, 29 (5), 986–1000. https;//doi.org/10.1111/mec.15368
  16. Dufresnes, C., Pribille, M., Alard, B., Gonçalves, H., Amat, F., Crochet, P.A., Dubey, S., Perrin, N., Fumagalli, L., Vences, M. & Martínez-Solano, Í. (2020b) Integrating hybrid zone analyses in species delimitation: lessons from two anuran radiations of the Western Mediterranean. Heredity, 124, 423–438. https://doi.org/10.1038/s41437-020-0294-z
  17. Dufresnes, C. & Litvinchuk, S.N. (2022) Diversity, distribution and molecular species delimitation in frogs and toads from the Eastern Palaearctic. Zoological Journal of the Linnean Society, 195, 695–760. https://doi.org/10.1093/zoolinnean/zlab083
  18. Dufresnes, C. & Jablonski, D. (2022) A genomics revolution in amphibian. Science, 377, 1272. https://doi.org/10.1126/science.ade5002
  19. Earl, D.A. & von Holdt, B.M. (2012) STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7
  20. Evanno, G., Regnaut, S. & Goudet, J. (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology, 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  21. Fei, L. & Ye, C.Y. (2016) Amphibians of China (I). Science Press, Beijing, 1040 pp.
  22. Fukutani, K., Matsui, M. & Nishikawa, K. (2023) Population genetic structure and hybrid zone analyses for species delimitation in the Japanese toad (Bufo japonicus). PeerJ, 11, e16302. https://doi.org/10.7717/peerj.16302
  23. Gosner, K. (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16, 183–190. [https://www.jstor.org/stable/3890061]
  24. Günther, A.C.L.G. (1859 "1858") Catalogue of the Batrachia Salientia in the Collection of the British Museum. Taylor and Francis, London, 160 pp. [https://archive.org/details/catalogueofbatra00brit/page/108/mode/2up]
  25. Hallowell, E. (1861) Report upon the Reptilia of the North Pacific Exploring Expedition, under command of Capt. John Rogers, U. S. N. Proceedings of the Academy of Natural Sciences of Philadelphia, 12, 480–510. [https://www.biodiversitylibrary.org/page/1801421#page/506/mode/1up]
  26. Hilgendorf, F. (1880) Bemerkungen über die von ihm in Japan gesammelten Schlangen nebst Beschreibungen zweier neuer Schlangenarten. Sitzungberichte der Gesellschaft Naturforschender Freunde zu Berlin, 8, 111–121. [https://www.biodiversitylibrary.org/page/8807341#page/132] https://doi.org/10.5962/bhl.part.14943
  27. Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42, 182–192. https://doi.org/10.1093/sysbio/42.2.182
  28. Holloway, A.K., Cannatella, D.C., Gerhardt, H.C. & Hillis, D.M. (2006) Polyploids with different origins and ancestors form a single sexual polyploid species. American Naturalist, 167, E88–E101. https://doi.org/10.1086/501079
  29. Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
  30. Jang, Y., Hahm, E.-H., Lee, H.-J., Park, S., Won, Y.-J. & Choe, J.-C. (2011) Geographic variation in advertisement calls in a tree frog species: gene flow and selection hypotheses. PLoS ONE, 6, e23297. https://doi.org/10.1371/journal.pone.0023297
  31. Japan Wildlife Research Center (2010) The National Survey on the Natural Environment Distributional Survey of Japanese Animals: Animal Distribution Atlas of Japan. Biodiversity Center of Japan, Nature Conservation Bureau, Ministry of the Environment, Tokyo, 289 pp. [https://www.biodic.go.jp/kiso/atlas/pdf/6.reptiles_amphibians.pdf]
  32. Jombart, T. (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129
  33. Kawamura, T., Nishioka, M. & Ueda, H. (1990) Reproductive isolation in treefrogs distributed in Japan, Korea, Europe and America. Scientific Report of the Laboratory for Amphibian Biology, Hiroshima University, 10, 255–293. [https://ir.lib.hiroshima-u.ac.jp/00000300]
  34. Kimura, S., Imanishi, Y., Kyoya, K. & Kiyota, T. (2017) Anuran species breeding at the coastal area in Akita Pref. Bulletin of the Herpetological Society of Japan, 2017, 47–52.
  35. Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35, 4453–4455. https://doi.org/10.1093/bioinformatics/btz305
  36. Kuramoto, M. (1980) Mating calls of treefrogs (genus Hyla) in the Far East, with description of a new species from Korea. Copeia, 1980, 100–108. https://doi.org/10.2307/1444138
  37. Kuzmin, S., Maslova, I., Matsui, M., Liang, F. & Kaneko, Y. (2017) Dryophytes japonicus. The IUCN Red List of Threatened Species, 2017, e.T55519A112714533. https://doi.org/10.2305/IUCN.UK.2017-1.RLTS.T55519A112714533.en
  38. Kuzmin, S. & Maslova, I.V. (2003) The amphibians of the Russian Far East. Advances in amphibian research in the former Soviet Union 8. Pensoft, Sofia, 464 pp.
  39. Lee, J.-E., Yang, D.-E., Kim, Y.-R., Lee, H., Lee, H.-I., Yang, S.-Y. & Lee, H.-Y. (1999) Genetic relationships of Korean treefrogs (Amphibia; Hylidae) based on mitochondrial cytochrome b and 12S rRNA genes. Korean Journal of Biological Sciences, 3, 295–301. https://doi.org/10.1080/12265071.1999.9647499
  40. Leaché, A.D. & Reeder, T.W. (2002) Molecular systematics of the eastern fence lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches. Systematic Biology, 51, 44–68. https://doi.org/10.1080/106351502753475871
  41. Leaché, A.D., Banbury, B.L., Felsenstein, J., Nieto-Montes de Oca, A. & Stamatakis, A. (2015) Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Systematic Biology, 64, 1032–1047. https://doi.org/10.1093/sysbio/syv053
  42. Li, J.-T., Wang, J.-S., Nian, H.-H., Litvinchuk, S.N., Wang, J., Li, Y., Rao, D.-Q. & Klaus, S. (2015) Amphibians crossing the Bering Land Bridge: Evidence from holarctic treefrogs (Hyla, Hylidae, Anura). Molecular Phylogenetics and Evolution, 87, 80–90. https://doi.org/10.1016/j.ympev.2015.02.018
  43. Matsui, T. (1979) Nihon san kaeru no bunrui ni kansuru shomondai [Some taxonomic problems concerning Japanese frogs]. Doubutsu to Shizen, 9, 2–7, pl.
  44. Matsui, M. (1984) Morphometric variation analyses and revision of the Japanese toads (genus Bufo, Bufonidae). Contributions from the Biological Laboratory, Kyoto University, 26, 209–428. [http://hdl.handle.net/2433/101561]
  45. Matsui, M. & Maeda, N. (2018) Encyclopedia of Japanese Frogs. Bun-ichi Sogo Shuppan, Tokyo, 271 pp.
  46. Matsui, M. & Matsui, T. (1982) Hyla hallowelli recorded from Iriomotejima, Yaeyama group, Ryukyu Archipelago. Japanese Journal of Herpetology, 9, 79–86. [https://www.jstage.jst.go.jp/article/hsj1972/9/3/9_3_79/_pdf] https://doi.org/10.5358/hsj1972.9.3_79
  47. Matsui, M., Okawa, H., Nishikawa, K., Aoki, G., Eto, K., Yoshikawa, N., Tanabe, S., Misawa, Y. & Tominaga, A. (2019) Systematics of the widely distributed Japanese clouded salamander, Hynobius nebulosus (Amphibia: Caudata: Hynobiidae), and its closest relatives. Current Herpetology, 38, 32–90. https://doi.org/10.5358/hsj.38.32
  48. Mayr, E. (1942) Systematics and the origin of species from the viewpoint of a zoologist. Columbia Biological Series No. 13. Columbia University Press, New York, New York, xiv + 334 pp.
  49. Nikolski, A.M. (1905) Presmykayushchiyesya i zemnovodnyye Rossiyskoy Imperii (S 2 tablitsami) [Reptiles and amphibians of the Russian Empire. (With 2 tables)]. Zapiski Imperatorskoi akademii nauk, po Fiziko-matematicheskomu otdieleniiu, 8e Série, 17, 1–517, 2 pls.
  50. Nishioka, M., Sumida, M. & Borkin, L.J. (1990) Biochemical differentiation of the genus Hyla distributed in the far east. Scientific Report of the Laboratory for Amphibian Biology, Hiroshima University, 10, 93–124. [https://ir.lib.hiroshima-u.ac.jp/00000293]
  51. Pritchard, J.K., Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945–959. https://doi.org/10.1093/genetics/155.2.945
  52. Puillandre, N., Brouillet, S. & Achaz, G. (2012) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21, 609–620. https://doi.org/10.1111/1755-0998.13281
  53. R Core Team. (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from: http://www.R-project.org/ (accessed 23 December 2024)
  54. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904. https://doi.org/10.1093/sysbio/syy032
  55. Rannala, B. (2007) BayesAss Edition 3.0 User’s Manual. University of California Davis, Davis, California, 14 pp.
  56. van Riemsdijk, I., Butlin, R.K., Wielstra, B. & Arntzen, J.W. (2019) Testing an hypothesis of hybrid zone movement for toads in France. Molecular Ecology, 28 (5), 1070–1083. https://doi.org/10.1111/mec.15005
  57. Sclater, W.L. (1892) List of the batrachia in the Indian Museum. Printed by order of the Trustees of the Indian Museum, London, 43 pp. [https://www.biodiversitylibrary.org/item/37318#page/44/mode/1up]
  58. Seto, T. (1964) The karyotype of Hyla arborea japonica with some remarks on heteromorphism of the sex chromosome. Journal of the Faculty of Science, Hokkaido University, Series 6, Zoology, 15, 366–373. [http://hdl.handle.net/2115/27382]
  59. Shannon, F.A. (1956) The reptiles and amphibians of Korea. Herpetologica, 12, 22–49. [https://www.jstor.org/stable/3889565]
  60. Shimada, T., Imamura, A. & Onishi, N. (2013) A study of larval phenologies of five anuran species in Japanese paddy fields. Bulletin of the Herpetological Society of Japan, 2013, 77–85.
  61. Shimada, T. (2022) Species composition and distribution patterns of Japanese anurans. Bulletin of the Herpetological Society of Japan, 2022, 292–308.
  62. Shimada, T., Matsui, M., Ogata, M., Miura, I., Tange, M., Min, M.-S. & Eto, K. (2022) Genetic and morphological variation analyses of Glandirana rugosa with description of a new species (Anura, Ranidae). Zootaxa, 5174, 25–45 https://doi.org/10.11646/zootaxa.5174.1.2
  63. Stamatakis, A. (2014) RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  64. Stankowski, S. & Ravinet, M. (2021) Quantifying the use of species concepts. Current Biology, 31, R415–R429. https://doi.org/10.1016/j.cub.2021.03.060
  65. Takahashi, K., Shimooka, Y. & Shinohara, M. (2016) Relationships between advertisement call characteristics and body size in Japanese tree frogs, Hyla japonica. Bulletin of Teikyo University of Science, 12, 25–28. [https://tust.repo.nii.ac.jp/record/294/files/v12p25-28.pdf]
  66. Tanabe, A.S. (2011) Kakusan4 and Aminosan: two programs for com- paring nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Molecular Ecology Resources, 11, 914–921. https://doi.org/10.1111/j.1755-0998.2011.03021.x
  67. Tokuda, T. (2011) Compact picture guide to Hokkaido reptiles and amphibians. Hokkaido Shimbun Press, Sapporo, 95 pp.
  68. Tominaga, A. & Matsui, M. (2007) Estimation of the type locality of Hynobius naevius (Temminck and Schlegel, 1838), a salamander from Japan (Amphibia: Caudata). Zoological Science, 24, 940–944. https://doi.org/10.2108/zsj.24.940
  69. Wiley, E.O. (1978) The evolutionary species concept reconsidered. Systematic Biology, 27, 17–26. https://doi.org/10.2307/2412809
  70. Wilson, G.A. & Rannala, B. (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 163, 1177–1191. https://doi.org/10.1093/genetics/163.3.1177
  71. Yamamoto, Y. (2012) Sound monitoring of anuran amphibians at two sites of different land usage in East Mikawa area. Scientific Report of the Toyohashi Museum of Natural History, 22, 13–18. [https://www.toyohaku.gr.jp/sizensi/06shuppan/kenkyuuho/kenpou22/22kenkyuu-houkoku13.pdf]
  72. Yang, S.-Y. (1962) Reconsideration on the classification of Korean anurans, family Hylidae. Korean Journal of Zoology, 5, 35–38. [https://koreascience.kr/article/JAKO196211919895576.page]
  73. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499