Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-03-26
Page range: 47-81
Abstract views: 279
PDF downloaded: 18

A taxonomic revision of the genus Raorchestes in Myanmar and Thailand with the description of two new species from Myanmar (Amphibia, Anura, Rhacophoridae)

Senckenberg Forschungsinstitut und Naturmuseum; Senckenberganlage 25; 60325 Frankfurt a.M.; Germany
Sonnenstraße 14; 72275 Alpirsbach-Römlinsdorf; Germany
Pathein University; Pathein; Myanmar
Institut de Systématique; Evolution; Biodiversité (ISYEB); Muséum National d’Histoire Naturelle; CNRS; Sorbonne Université; EPHE; Université des Antilles; 57 Rue Cuvier; 75005 Paris; France
Department of Biology; Faculty of Science; Chulalongkorn University; Bangkok; Thailand 10330
Department of Biology; Faculty of Science; Khon Kaen University; Mueang; Khon Kaen; Thailand 40002
Department of Biology; Faculty of Science; Khon Kaen University; Mueang; Khon Kaen; Thailand 40002
Senckenberg Forschungsinstitut und Naturmuseum; Senckenberganlage 25; 60325 Frankfurt a.M.; Germany
Amphibia Bioacoustics cryptic species diversity Southeast Asia

Abstract

We revise the frogs of the genus Raorchestes from Myanmar and Thailand based on data of external morphology, bioacoustics, and molecular genetics. The results of this integrative study provide evidence for the recognition of seven species, two of which we describe as new: Raorchestes mindat sp. nov. from Mindat District, Chin State, western Myanmar, and Raorchestes leiktho sp. nov. from Hpa-an District, Kayin State, southeastern Myanmar. The other species that we recognize in Myanmar and Thailand are R. cangyuanensis, R. huanglianshan, R. longchuanensis, R. menglaensis, and R. parvulus. We have compared the external morphology of the lectotype and four paralectotypes of Ixalus parvulus Boulenger, 1893 with the species of the Raorchestes parvulus group currently recognized from South-east Asia. Although the type series of Ixalus parvulus is morphologically most similar to specimens of R. cangyuanensis from Thailand, we refrain from formally synonymizing these two taxa until genetic data for I. parvulus are available that would allow this hypothesis to be tested. Thus, R. parvulus remains an enigmatic taxon still only known from the original type series. As now defined, R. cangyuanensis is distributed across most of Myanmar except for the Malayan Peninsula, and also in adjacent Yunnan Province, China, and adjacent northeastern Bangladesh. Raorchestes longchuanensis occurs in northwestern Thailand as well as in eastern Myanmar and western Yunnan, China. Raorchestes menglaensis ranges from southern Yunnan, China, across Thailand, Laos, and Cambodia to northern Western Malaysia. Raorchestes huanglianshan is distributed in southern Yunnan, China, and northwestern Thailand. Often two, at some places even three species of this genus occur sympatrically (e.g., R. leiktho sp. nov., R. longchuanensis and R. parvulus near Leiktho, Kayin State, Myanmar; R. longchuanensis and R. huanglianshan at Doi Inthanon). We provide new bioacoustic data for R. longchuanensis, R. menglaensis, and R. leiktho sp. nov., and compare these with data of R. cangyuanensis and R. rezakhani.

 

References

  1. Ahl, E. (1927) Zur Systematik der asiatischen Arten der Froschgattung Rhacophorus. Sitzungsberichte der Gesellschaft Naturforschender Freunde Berlin, 1927, 35–47.
  2. Al-Razi, H., Maria, M., Hasan, S. & Muzaffar, S.B. (2020a) First record of Raorchestes longchuanensis Yang and Li, 1978 (Anura: Rhacophoridae) from northeastern Bangladesh suggests wide habitat tolerance. Amphibian & Reptile Conservation, 14, 119–131.
  3. Al-Razi, H., Maria, M. & Muzaffar, S.B. (2020b) A new species of cryptic Bush frog (Anura, Rhacophoridae, Raorchestes) from northeastern Bangladesh. ZooKeys, 927, 127–151. https://doi.org/10.3897/zookeys.927.48733
  4. Anderson, J. (1879) Anatomical and zoological researches, comprising an account of the zoological results of the two expeditions to Western Yunnan in 1868 and 1875 and monograph of the two Cetacean genera Platanista and Orcella. Vol. 1. Quaritch, London, xxv + 985 pp. https://doi.org/10.5962/bhl.title.55401
  5. Andrews, S. (2010) FastQC: A Quality Control Tool for High Throughput Sequence Data. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed 17 February 2025)
  6. Anonymous (2003) Declaration 44 - Amendment of Article 74.7.3. Bulletin of Zoological Nomenclature, 60, 263.
  7. Arnold, J.A. (2021) ggthemes: Extra Themes, Scales and Geoms for ’ggplot2’.
  8. Biju, S.D., Shouche, Y.S., Dubois, A., Dutta, S.K. & Bossuyt, F. (2010) A ground-dwelling rhacophorid frog from the highest mountain peak of the Western Ghats of India. Current Science, 98, 1119–1125.
  9. Bolger, A.M., Lohse, M. & Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, Oxford, England, 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  10. Boulenger, G.A. (1893) Concluding report on the reptiles and batrachians obtained in Burma by Signor L. Fea dealing with the collection made in Pegu and the Karin Hills in 1887–88. Annali del Museo Civico di Storia Naturale di Genova, Serie 2, 13, 304–337.
  11. Burnham, K.P. & Anderson, D.R. (2002) Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. Springer-Verlag New York Inc, New York, NY.
  12. Bushnell, B. (2014) BBMap: A Fast, Accurate, Splice-Aware Aligner. Available from: https://sourceforge.net/projects/bbmap/ (accessed 17 February 2025)
  13. Capocaccia, L. (1957) Catalogo dei tipi di anfibi del Museo Civico di Storia Naturale di Genova. Annali del Museo Civico di Storia Naturale di Genova, Serie 3, 69, 208–222.
  14. Chang, W. (2012) extrafontdb: Package for holding the database for the extrafont package. Available from: https://cran.r-project.org/web/packages/extrafontdb/index.html (accessed 17 February 2025)
  15. Chang, W. (2023) extrafont: Tools for Using Fonts. R Foundation for Statistical Computing, Vienna. [program]
  16. Chikhi, R. & Medvedev, P. (2014) Informed and automated k-mer size selection for genome assembly. Bioinformatics, 30, 31–37. https://doi.org/10.1093/bioinformatics/btt310
  17. Dierckxsens, N., Mardulyn, P. & Smits, G. (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45, e18. https://doi.org/10.1093/nar/gkw955
  18. Dubois, A., Ohler, A. & Pyron, R.A. (2021) New concepts and methods for phylogenetic taxonomy and nomenclature in zoology, exemplified by a new ranked cladonomy of recent amphibians (Lissamphibia). Megataxa, 5 (1), 1–738. https://doi.org/10.11646/megataxa.5.1.1
  19. Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC bioinformatics, 5, 1–19. https://doi.org/10.1186/1471-2105-5-113
  20. Fea, L. (1897) Viaggio di Leonardo Fea in Birmania e regione vicine. LXXVI Riassunto generale dei risultati zoologici. Annali del Museo Civico di Storia Naturale di Genova, 37, 385–658. https://doi.org/10.5962/bhl.title.34656
  21. Frost, D.R. (2023) Amphibian Species of the World: an Online Reference. Version 6.2. American Museum of Natural History, New York, New York. Available from https://amphibiansoftheworld.amnh.org/index.php (accessed 28 August 2023)
  22. Garg, S., Suyesh, R., Das, S., Bee, M.A. & Biju, S.D. (2021) An integrative approach to infer systematic relationships and define species groups in the shrub frog genus Raorchestes, with description of five new species from the Western Ghats, India. PeerJ, 9, e10791. https://doi.org/10.7717/peerj.10791
  23. Gelman, A. & Rubin, D.B. (1992) Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472. https://doi.org/10.1214/ss/1177011136
  24. Glez-Peña, D., Gómez-Blanco, D., Reboiro-Jato, M., Fdez-Riverola, F. & Posada, D. (2010) ALTER: program-oriented conversion of DNA and protein alignments. Nucleic Acids Research, 38, 14–18. https://doi.org/10.1093/nar/gkq321
  25. Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321. https://doi.org/10.1093/sysbio/syq010
  26. Hallermann, J. (2006) Additions to the catalogue of the type specimens of the herpetological collection in the Zoological Museum of the University of Hamburg. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 103, 137–147.
  27. Heyer, W.R. (1994) Variation within the Leptodactylus podicipinus-wagneri complex of frogs (Amphibia: Leptodactylidae). Smithsonian Contributions to Zoology, 546, i–iv + 1–124. https://doi.org/10.5479/si.00810282.546.i
  28. Heyer, W.R., Rand, A.S., Goncalves da Cruz, C. A., Peixoto, O.L. & Nelson, C.E. (1990) Frogs of Boraceia. Arquivos de Zoologia, 31, 235–410.
  29. Huang, J., Liu, X.L., Du, L., Bernstein, J.M., Liu, S., Yang, Y., Yu, G. & Wu, Z. (2023) A new species of Bush frog (Anura, Rhacophoridae, Raorchestes) from southeastern Yunnan, China. ZooKeys, 1151, 47–65. https://doi.org/10.3897/zookeys.1151.95616
  30. Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, Oxford, England, 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
  31. IUCN (2012) IUCN Red List Categories and Criteria. Version 3.1. 2nd Edition. Available from: https://portals.ucn.org/library/node/10315 (accessed 17 November 2018)
  32. Ivanova, N.V., Waard, J. de & Hebert, P.D. (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes, 6, 998–1002. https://doi.org/10.1111/j.1471-8286.2006.01428.x
  33. Jackman, S.D., Vandervalk, B.P., Mohamadi, H., Chu, J., Yeo, S., Hammond, S.A., Jahesh, G., Khan, H., Coombe, L., Warren, R.L. & Birol, I. (2017) ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Research, 27, 768–777. https://doi.org/10.1101/gr.214346.116
  34. Jiang, K., Ren, J., Wang, J., Guo, J., Wang, Z., Liu, Y., Jiang, D. & Li, J. (2020a) Taxonomic revision of Raorchestes menglaensis (Kou, 1990) (Amphibia: Anura), with descriptions of two new species from Yunnan, China. Asian Herpetological Research, 11, 263–281.
  35. Jiang, K., Ren, J.-L., Guo, J.-F., Wang, Z., Ding, L. & Li, J.-T. (2020b) A new species of the genus Dendrelaphis (Squamata: Colubridae) from Yunnan Province, China, with discussion of the occurrence of D. cyanochloris (Wall, 1921) in China. Zootaxa, 4743 (1), 1–20. https://doi.org/10.11646/zootaxa.4743.1.1
  36. Jin, J.-J., Yu, W.-B., Yang, J.-B., Song, Y., dePamphilis, C.W., Yi, T.-S. & Li, D.-Z. (2020) GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21, 241. https://doi.org/10.1186/s13059-020-02154-5
  37. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  38. Kekkonen, M., Mutanen, M., Kaila, L., Nieminen, M. & Hebert, P.D.N. (2015) Delineating species with DNA Barcodes: A case of taxon dependent method performance in moths. PLoS ONE, 10 (4), e0122481. https://doi.org/10.1371/journal.pone.0122481
  39. Keller, O., Kollmar, M., Stanke, M. & Waack, S. (2011) A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics, 27, 757–763. https://doi.org/10.1093/bioinformatics/btr010
  40. Köhler, G. (2012) Color Catalogue for Field Biologists. Herpeton, Offenbach, 19 pp.
  41. Köhler, G., Zwitzers, B., Than, N.L., Gupta, D.K., Janke, A., Pauls, S.U. & Thammachoti, P. (2021) Bioacoustics reveal hidden diversity in frogs: Two new species of the genus Limnonectes from Myanmar (Amphibia, Anura, Dicroglossidae). Diversity, 13 (9), 399. https://doi.org/10.3390/d13090399
  42. Köhler, J., Jansen, M., Rodríguez, A., Kok, P.J.R., Toledo, L.F., Emmrich, M., Glaw, F., Haddad, C.F.B., Rödel, M.-O. & Vences, M. (2017) The use of bioacoustics in anuran taxonomy: theory, terminology, methods and recommendations for best practice. Zootaxa, 4251 (1), 1–124. https://doi.org/10.11646/zootaxa.4251.1.1
  43. Kou, Z. (1990) A new species of genus Philautus (Amphibia: Rhacophoridae) from Yunnan, China. In: Zhao, E. (Ed.), From water onto Land. A volume Issued to Commemorate the Ninetieth Birthday of the Late Professor Liu Cheng-zhao. Chung-kuo lin yeh ch’u pan she, Beijing, pp. 210–212.
  44. Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870–1874. https://doi.org/10.1093/molbev/msw054
  45. Kuraishi, N., Matsui, M., Hamidy, A., Belabut, D.M., Ahmad, N., Panha, S., Sudin, A., Yong, H.S., Jiang, J.-P., Ota, H., Thong, H.T. & Nishikawa, K. (2013) Phylogenetic and taxonomic relationships of the Polypedates leucomystax complex (Amphibia). Zoologica Scripta, 42, 54–70. https://doi.org/10.1111/j.1463-6409.2012.00562.x
  46. Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772–773. https://doi.org/10.1093/molbev/msw260
  47. Marcais, G. & Kingsford, C. (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27 (6), 764–770. https://doi.org/10.1093/bioinformatics/btr011
  48. Meng, G., Li, Y., Yang, C. & Liu, S. (2019) MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research, 47, e63. https://doi.org/10.1093/nar/gkz173
  49. Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. (2018) Versatile genome assembly evaluation with QUAST-LG. Bioinformatics, 34, i142–i150. https://doi.org/10.1093/bioinformatics/bty266
  50. Minh, B.Q., Nguyen, M.A.T. & Haeseler, A. von (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30, 1188–1195. https://doi.org/10.1093/molbev/mst024
  51. Ohler, A. (1999) The identity of Dendrobatorana Ahl, 1927 (Amphibia, Ranoidea). Zoosystematics and Evolution, 75, 37–45. https://doi.org/10.1002/mmnz.19990750105
  52. Ohler, A. & Dubois, A. (1999) The identity of Elachyglossa gyldenstolpei Andersson, 1916 (Amphibia, Ranidae), with comments on some aspects of statistical support to taxonomy. Zoologica Scripta, 28, 269–279. https://doi.org/10.1046/j.1463-6409.1999.00002.x
  53. Ohler, A. & Dubois, A. (2016) The identity of the South African toad Sclerophrys capensis Tschudi, 1838 (Amphibia, Anura). PeerJ, 4, e1553. https://doi.org/10.7717/peerj.1553
  54. Posit Team (2023) RStudio: Integrated Development Environment for R. RStudio, Boston, Massachusetts. [program]
  55. Poyarkov, N.A., van Nguyen, T., Popov, E.S., Geissler, P., Pawangkhanant, P., Neang, T., Suwannapoom, C. & Orlov, N.L. (2021) Recent progress in taxonomic studies, biogeographic analysis, and revised checklist of amphibians in Indochina. Russian Journal of Herpetology, 28, 1–110. https://doi.org/10.30906/1026-2296-2021-28-3A-1-110
  56. Pyron, R. & Wiens, J.J. (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61, 543–583. https://doi.org/10.1016/j.ympev.2011.06.012
  57. R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. [program]
  58. Ranallo-Benavidez, T., Jaron, K. & Schatz, M. (2020) GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nature Communications, 11 (1), 1432. https://doi.org/10.1038/s41467-020-14998-3
  59. Rancilhac, L., Bruy, T., Scherz, M.D., Pereira, E.A., Preick, M., Straube, N., Lyra, M.L., Ohler, A., Streicher, J.W., Andreone, F., Crottini, A., Hutter, C.R., Randrianantoandro, J.C., Rakotoarison, A., Glaw, F., Hofreiter, M. & Vences, M. (2020) Target-enriched DNA sequencing from historical type material enables a partial revision of the Madagascar giant stream frogs (genus Mantidactylus). Journal of Natural History, 54, 87–118. https://doi.org/10.1080/00222933.2020.1748243
  60. Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, Oxford, England, 19, 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  61. Ronquist, F., Teslenko, M., Mark, P., Ayres, D., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. & Huelsenbeck, J. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  62. Rudis, B., Bolker, B. & Schulz, J. (2017) ggalt: Extra Coordinate Systems, ’Geoms’, Statistical Transformations, Scales and Fonts for ’ggplot2’. Available from: https://hrbrmstr.r-universe.dev/ggalt (accessed 17 February 2025) https://doi.org/10.32614/CRAN.package.ggalt
  63. Savage, J.M. & Heyer, W.R. (1997) Digital webbing formulae for anurans: a refinement. Herpetological Review, 28, 131.
  64. Scherz, M.D., Crottini, A., Hutter, C.R., Hildenbrand, A., Andreone, F., Fulgence, T.R., Köhler, G., Ndriantsoa, S.H., Ohler, A., Preick, M., Rakotoarison, A., Rancilhac, L., Raselimanana, A.P., Riemann, J.C., Rödel, M.-O., Rosa, G.M., Streicher, J.W., Vieites, D.R., Köhler, J., Hofreiter, M., Glaw, F. & Vences, M. (2022) An inordinate fondness for inconspicuous brown frogs: integration of phylogenomics, archival DNA analysis, morphology, and bioacoustics yields 24 new taxa in the subgenus Brygoomantis (genus Mantidactylus) from Madagascar. Megataxa, 7 (2), 113–311. https://doi.org/10.11646/megataxa.7.2.1
  65. Sheridan, J.A. & Stuart, B.L. (2018) Hidden species diversity in Sylvirana nigrovittata (Amphibia: Ranidae) highlights the importance of taxonomic revisions in biodiversity conservation. PLoS ONE, 13, e0192766. https://doi.org/10.1371/journal.pone.0192766
  66. Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. & Zdobnov, E.M. (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31, 3210–3212. https://doi.org/10.1093/bioinformatics/btv351
  67. Simpson, G.G. (1951) The species concept. Evolution, 5 (4), 285–298. https://doi.org/10.1111/j.1558-5646.1951.tb02788.x
  68. Smith, M.A. (1940) The amphibians and reptiles obtained by Mr. Ronald Kaulback in Upper Burma. Records of the Indian Museum, 42, 465-486, pl. 8. https://doi.org/10.26515/rzsi/v42/i3/1940/162431
  69. Trifinopoulos, J., Nguyen, L.-T., Haeseler, A. von & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44, W232–W235. https://doi.org/10.1093/nar/gkw256
  70. Venables, W.N. & Ripley, B.D. (2002) Modern Applied Statistics with S. Springer-Verlag, New York, New York, 495 pp. https://doi.org/10.1007/978-0-387-21706-2
  71. Vurture, G., Sedlazeck, F., Nattestad, M., Underwood, C., Fang, H., Gurtowski, J. & Schatz, M. (2017) GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics, 33 (14), 2202–2204. https://doi.org/10.1093/bioinformatics/btx153
  72. Weihs, C., Ligges, U., Luebke, K. & Raabe, N. (2005) klaR Analyzing German Business Cycles. In: Baier, D., Decker, R. & Schmidt-Thieme, L. (Eds.), Data Analysis and Decision Support. Springer-Verlag, Berlin, pp. 335–343. https://doi.org/10.1007/3-540-28397-8_36
  73. Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. [program]
  74. Wiley, E.O. (1978) The Evolutionary Species Concept Reconsidered. Systematic Biology, 27, 17–26. https://doi.org/10.2307/2412809a
  75. Wilke, C.O. & Wiernik, B.M. (2022) ggtext: Improved Text Rendering Support for ’ggplot2’. Available from: https://cran.r-project.org/web/packages/ggtext/ggtext.pdf (accessed 17 February 2025)
  76. Wu, Y.-H., Suwannapoom, C., Poyarkov, J.N.A., Gao, W., Karuno, A.P., Yuan, Z.-Y. & Che, J. (2022) First record of Kurixalus odontotarsus (Ye et Fei, 1993) and Raorchestes longchuanensis (Yang et Li, 1978) (Anura: Rhacophoridae) in Thailand. Russian Journal of Herpetology, 29, 1–18. https://doi.org/10.30906/1026-2296-2022-29-1-1-18
  77. Wu, Y.-H., Suwannapoom, C., Xu, K., Chen, J.-M., Jin, J.-Q., Chen, H.-M., Murphy, R. & Che, J. (2019) A new species of the genus Raorchestes (Anura: Rhacophoridae) from Yunnan Province, China. Zoological Research, 40, 558–563. https://doi.org/10.24272/j.issn.2095-8137.2019.066
  78. Yang, D. & Li, S.-M. (1978) Raorchestes longchuanensis. In: Yang, D., Su, C. & Li, S. (Eds.), Amphibians and Reptiles of Gaoligongshan, Kunming. Scientific Report of the Yunnan Institute of Zoology. No. 8. Academia Sinica, Kunming, pp. 37–38.

How to Cite

Köhler, G., Dost, O., Than, N.L., Ohler, A., Charunrochana, P.T., Chuaynkern, Y., Chuaynkern, C. & Geiss, K. (2025) A taxonomic revision of the genus Raorchestes in Myanmar and Thailand with the description of two new species from Myanmar (Amphibia, Anura, Rhacophoridae). Zootaxa, 5613 (1), 47–81. https://doi.org/10.11646/zootaxa.5613.1.2