Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-03-26
Page range: 171-185
Abstract views: 114
PDF downloaded: 7

Three new species and phylogenetic affinity of the neotropical genus Sericobracon Shaw (Braconidae: Doryctinae)

Colección Nacional de Insectos; Instituto de Biología; Universidad Nacional Autónoma de México; 3er Circuito Exterior s/n; Cd. Universitaria; Copilco; Coyoacán; A. P. 70-233; C. P 04510; Ciudad de México; MÉXICO.
Colección Nacional de Insectos; Instituto de Biología; Universidad Nacional Autónoma de México; 3er Circuito Exterior s/n; Cd. Universitaria; Copilco; Coyoacán; A. P. 70-233; C. P 04510; Ciudad de México; MÉXICO.
University of Wyoming; Department of Ecosystem Science and Management (3354); 1000 E. University Avenue; Laramie; WY 82071 USA.
Hymenoptera new species embiid parasitoids phylogenomics DNA barcoding

Abstract

Sericobracon Shaw is a small doryctine genus which was erected based on two species from Trinidad and the U.S. Virgin Islands (St. Croix) in the Caribbean Sea (S. arimaensis Shaw and S. evansi Shaw). Its type species, S. arimaensis, was reported as endoparasitoid of an Embioptera species, which is a unique biology for known Braconidae. Here we describe three new species of Sericobracon from Costa Rica: S. paulmarshi Zaldívar-Riverón & Shaw, S. puravida Zaldívar-Riverón & Shaw, and S. zunigai Zaldívar-Riverón & Shaw. The former species is characterized with DNA barcoding, providing the first such molecular data for any species in this genus. We also investigated the phylogenetic affinity of the genus within the subfamily Doryctinae based on nuclear UCE data. Sericobracon was recovered within the main Neotropical doryctine clade closely related to Bolivar Zaldívar-Riverón & Rodríguez-Jiménez and Parallorhogas Marsh. We discuss the higher taxonomic classification of Sericobracon and the latter two genera within the Doryctinae based on these relationships recovered and their shared morphological features. A key to species and digital photographs of the five described species of Sericobracon are provided.

 

References

  1. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A. & Pevzner, P.A. (2012) SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 19, 455–477. https://doi.org/10.1089/cmb.2012.0021
  2. Belokobylskij, S.A. (1992) On the classification and phylogeny of the braconid wasps of subfamilies Doryctinae and Exothecinae (Hymenoptera, Braconidae). Part I. On the classification, 1. Entomologicheskoe Obozrenie, 71, 900–928. [in Russian, English translation Entomological Review, 72, 109–137 (1993)]
  3. Belokobylskij, S.A. & Maeto, K. (2009) Doryctinae (Hymenoptera: Braconidae) of Japan. Vol. 1. Natura optima dux Foundation, Warszawska Drukarnia Naukowa, Warszawa, 806 pp. https://doi.org/10.3161/067.058.0107
  4. Belokobylskij, S.A., Zaldivar-Riveroìn, A. & Quicke, D.L.J. (2004) Phylogeny of the genera of the parasitic wasps subfamily Doryctinae (Hymenoptera: Braconidae) based on morphological evidence. Zoological Journal of the Linnean Society, 142, 369–404. https://doi.org/10.1111/j.1096-3642.2004.00133.x
  5. Bolger, A.M., Lohse, M. & Usadel, B. (2014) Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  6. Branstetter, M.G., Longino, J.T., Ward, P.S. & Faircloth, B.C. (2017) Enriching the ant tree of life: enhanced UCE bait set for genome‐scale phylogenetics of ants and other Hymenoptera. Methods in Ecology and Evolution, 8, 768–776. https://doi.org/10.1111/2041-210X.12742
  7. Castañeda-Osorio, R., Belokobylskij, S.A., Jasso-Martínez, J.M., Samacá-Sáenz, E., Kula, R.R. & Zaldívar-Riverón, A. (2024) Mitogenome architecture supports the non-monophyly of the cosmopolitan parasitoid wasp subfamily Doryctinae (Hymenoptera: Braconidae) recovered by nuclear and mitochondrial phylogenomics. Invertebrate Systematics, 38, IS24029. https://doi.org/10.1071/IS24029
  8. Castresana J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  9. Chishti, M.J.K. & Quicke, D.L.J. (1995) A new genus and phylogenetic analysis of the Bathyaulacini and Glyptomorphini (Hymenoptera: Braconidae: Braconinae). Systematic Entomology, 20, 73–84. https://doi.org/10.1111/j.1365-3113.1995.tb00084.x
  10. Del Fabbro, C., Scalabrin, S., Morgante, M. & Giorgi, F.M. (2013) An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS ONE, 8, e85024. https://doi.org/10.1371/journal.pone.0085024
  11. Eggleton, P. (1989) The phylogeny and evolutionary biology of the Pimplinae (Hymenoptera: Ichneumonidae). Unpublished DPhil Thesis, University of London, London. [unknown pagination]
  12. Faircloth, B.C. (2013) Illumiprocessor: a trimmomatic wrapper for parallel adapter and quality trimming. Available from: http://doi.org/10.6079/J9ILL (accessed 17 February 2025)
  13. Faircloth, B.C. (2016) PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics, 32, 786–788. https://doi.org/10.1093/bioinformatics/btv646
  14. Fischer, M. (1981) Versuch ainer systematischen Gliederung der Doryctinae, insbesondere der Doryctini, und Redeskiption nach Material aus den Naturwissenschaftlichen Museum in Budapest (Hymenoptera: Braconidae). Polskie Pismo Entomologiczne, 51, 41–99.
  15. Freitas, F.V., Branstetter, M.G., Franceschini-Santos, V.H., Dorchin, A., Wright, K.W., López-Uribe, M.M. & Almeida, E.A. (2023) UCE phylogenomics, biogeography, and classification of long-horned bees (Hymenoptera: Apidae: Eucerini), with insights on using specimens with extremely degraded DNA. Insect Systematics and Diversity, 7, 3. https://doi.org/10.1093/isd/ixad012
  16. Glenn, T.C., Nilsen, R.A., Kieran, T.J., Sanders, J.G., Bayona-Vásquez, N.J., Finger, J.W., Pierson, T.W., Bentley, K.E., Hoffberg, S.L., Louha, S., García-De León, F.J., del Rio Portilla, M.A., Reed, K.D., Anderson, J.L., Meece, J.K., Aggrey, S.E., Rekaya, R., Alabady, M., Belanger, M., Winker, K. & Faircloth, B.C. (2019) Adapterama I: universal stubs and primers for 384 unique dual-indexed or 147,456 combinatorially-indexed Illumina libraries (iTru & iNext). PeerJ, 7, e7755. https://doi.org/10.7717/peerj.7755
  17. Harris, R.A. (1979) A glossary of surface sculpturing. Occasional Papers in Entomology, State of California Department of Food and Agriculture, 28, 1–31.
  18. Hebert, P.D.N., Ratnasingham, S. & de Waard, J.R. (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society, Series B: Biological Sciences, 270, S96–S99. https://doi.org/10.1098/rsbl.2003.0025
  19. Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522. https://doi.org/10.1093/molbev/msx281
  20. Jasso-Martínez, J.M., Quicke, D.L.J., Belokobylskij, S.A., Santos, B.F., Fernández-Triana, J.L., Kula, R.R. & Zaldívar-Riverón, A. (2022a) Mitochondrial phylogenomics and mitogenome organization in the parasitoid wasp family Braconidae (Hymenoptera: Ichneumonoidea). BMC Ecology and Evolution, 22, 46. https://doi.org/10.1186/s12862-022-01983-1
  21. Jasso-Martínez, J.M., Santos, B.F., Zaldívar-Riverón, A., Fernández-Triana, J.L., Sharanowski, B.J., Richter, R., Dettman, J.R., Blaimer, B.B., Brady, S.G. & Kula, R.R. (2022b) Phylogenomics of braconid wasps (Hymenoptera, Braconidae) sheds light on classification and the evolution of parasitoid life history traits. Molecular Phylogenetics and Evolution, 173, 107452. https://doi.org/10.1016/j.ympev.2022.107452
  22. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., Von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285
  23. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
  24. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  25. López-Estrada, K.E., Briceño, R.G., Smith, A.M., Nunes, J.F., Penteado-Dias, A.M., Ceccarelli, F.S., Clebsch, H. & Zaldívar-Riverón, A. (2012) Seven new species of Notiospathius (Hymenoptera, Braconidae, Doryctinae) from Northwest Venezuela. Journal of Hymenoptera Research, 29, 37–62. https://doi.org/10.3897/jhr.29.3555
  26. Marsh, P.M. (2002) The Doryctinae of Costa Rica (excluding the genus Heterospilus). Memoirs of the American Entomological Institute, 70, 1–319.
  27. Marsh, P.M. (1997) Subfamily Doryctinae. In: Wharton, R.A., Marsh, P.M. & Sharkey, M.J. (Eds.), Manual of the New World genera of the family Braconidae (Hymenoptera). Special Publication of the International Society of Hymenopterists. International Society of Hymenopterists, Washington, D.C., pp. 19–37.
  28. Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. & Lanfear, R. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530–1534. https://doi.org/10.1093/molbev/msaa015
  29. Quicke, D.L.J. (1997) Parasitic wasps. Chapman Hall, London, 470 pp.
  30. Quicke, D.L.J. & Kruft, R.A. (1995) Species of Yelicones (Hymenoptera: Braconidae: Rogadinae) in North America with descriptions of two new species. Annals of the Entomological Society of America, 88, 129–138. https://doi.org/10.1093/aesa/88.2.129
  31. Sharanowski, B.J., Dowling, A.P.G. & Sharkey, M.J. (2011) Molecular phylogenetics of Braconidae (Hymenoptera: Ichneumonoidea), based on multiple nuclear genes, and implications for classification. Systematic Entomology, 36, 549–572. https://doi.org/10.1111/j.1365-3113.2011.00580.x
  32. Sharkey, M.J. & Wharton, R.A. (1997) Morhpology and terminology. In: Wharton, R.A., Marsh, P.M., Sharkey, M.J. (Eds.), Manual of the New World genera of the family Braconidae (Hymenoptera). Special Publication of the International Society of Hymenopterists. International Society of Hymenopterists, Washington, D.C., pp. 19–37.
  33. Shaw, S.R. (1995) Chapter 12.2. Family Braconidae. In: Hanson, P.E. & Gauld, I.D. (Eds.), The Hymenoptera of Costa Rica. Oxford University Press, Oxford, pp. 431–463.
  34. Shaw, M.R. & Huddleston, T. (1991) Classification and biology of braconid wasps (Hymenoptera: Braconidae). Handbooks for the Identification of the British Isles. Vol. 7. Part 11. Royal Entomological Society of London, London, 126 pp.
  35. Shaw, S.R. & Edgerly, J.S. (1985) A new braconid genus (Hymenoptera) parasitizing webspinners (Embiidina) in Trinidad. Psyche, 92, 505–511. https://doi.org/10.1155/1985/54285
  36. Tagliacollo, V.A. & Lanfear, R. (2018) Estimating improved partitioning schemes for ultraconserved elements. Molecular Biology and Evolution, 35, 1798–1811. https://doi.org/10.1093/molbev/msy069
  37. van Achterberg, C. (1995) Generic revision of the subfamily Betylobraconinae (Hymenoptera: Braconidae) and other groups with modified fore tarsus. Zoologische Verhandelingen, 298, 1–242.
  38. Zaldívar-Riverón, A., Belokobylskij, S.A., León-Regagnon,V., Briceño, R. & Quicke, D.L.J. (2008) Molecular phylogeny and historical biogeography of the parasitic wasp subfamily Doryctinae (Hymenoptera: Braconidae). Invertebrate Systematics, 22, 345–363. https://doi.org/10.1071/IS07028
  39. Zaldívar-Riverón, A., Mori, M. & Quicke, D.L.J. (2006) Systematics of the cyclostome subfamilies of braconid parasitic wasps (Hymenoptera: Ichneumonoidea): a simultaneous molecular and morphological Bayesian approach. Molecular Phylogenetics and Evolution, 38, 130–145. https://doi.org/10.1016/j.ympev.2005.08.006

How to Cite

Zaldívar-Riverón, A., Castañeda-Osorio, R. & Shaw, S.R. (2025) Three new species and phylogenetic affinity of the neotropical genus Sericobracon Shaw (Braconidae: Doryctinae). Zootaxa, 5613 (1), 171–185. https://doi.org/10.11646/zootaxa.5613.1.9