Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-04-03
Page range: 393-410
Abstract views: 114
PDF downloaded: 8

Completing the information gap in Gammarus anodon (Crustacea: Amphipoda) using molecular and ecological approaches

Department of Biology; Faculty of Science; Razi University; Baghabrisham 6714967346; Kermanshah; Iran
Department of Biology; Faculty of Science; Razi University; Baghabrisham 6714967346; Kermanshah; Iran
Crustacea Gammarus anodon New record Morphology Ecology Phylogenetics Sarab-e-Youan Iran

Abstract

Gammarus anodon, an endemic amphipod species first described from the Hashilan Wetland in Iran, has faced significant challenges due to the periodic drying of its type locality. Consequently, no specimens were found during multiple sampling efforts in 2023–2024. In this paper, we report G. anodon at Sarab-e-Youan, a new locality 25 Km from the original site. Morphological analyses confirmed this population as G. anodon based on diagnostic characteristics. This paper also provides the first molecular and ecological insights into the species. Genetic analyses, including mitochondrial COI and nuclear 28S rDNA sequences, confirmed that G. anodon is genetically distinct from other Iranian Gammarus species. Maximum-likelihood phylogenetic trees revealed a close genetic relationship between G. anodon and G. ilamensis, with the Qaladez and Pahn populations forming a distinct clade. Furthermore, G. anodon is identified as part of the G. komareki species complex. Genetic distances between G. anodon and other Iranian species ranged from 0.68% to 16.22% for 28S rDNA and 2.19% to 32.73% for COI genes. Ecological assessments of Sarab-e-Youan highlighted environmental parameters that support G. anodon, including alkaline pH (8.6), high dissolved oxygen levels (10 mg/L), and moderate water conductivity (448 μS/cm) with a water temperature of 17°C. Comparative morphological studies revealed population-level variations, particularly in the antenna and gnathopods, between the Sarab-e-Youan and Hashilan populations. This research provides new insights into the taxonomy, phylogeny, and ecological preferences of G. anodon, emphasizing the need for further studies on the biogeography and conservation of this species in Iran.

 

References

  1. Alther, R., Krähenbühl, A., Bucher, P. & Altermatt, F. (2023) Optimizing laboratory cultures of Gammarus fossarum (Crustacea: Amphipoda) as a study organism in environmental sciences and ecotoxicology. Science of the Total Environment, 855, 158730. https://doi.org/10.1016/j.scitotenv.2022.158730
  2. Astrin, J.J. & Stüben, P.E. (2008) Phylogeny in cryp­tic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchi­nae (Coleoptera: Curculionidae). Invertebrate Systematics, 22, 503–522. https://doi.org/10.1071/IS07057
  3. Axenov-Gribanov, D., Bedulina, D., Shatilina, Z., Jakob, L., Vereshchagina, K., Lubyaga, Y., Gurkov, A., Shchapova, E., Luckenbach, T., Lucassen, M. & Sartoris, F.J. (2016) Thermal preference ranges correlate with stable signals of universal stress markers in Lake Baikal endemic and Holarctic amphipods. PLoS One, 11 (10), e0164226. https://doi.org/10.1371/journal.pone.0164226
  4. Esmaeili-Rineh, S. & Shabani, S. (2021) A new species of freshwater amphipod of the genus Gammarus from Iran. North-Western Journal of Zoology, 17, 170–179.
  5. Fabricius, J.C. (1775) Systema Entomologiae, sistens insectorum classes, ordines, genera, species, adiectis synonymis, locis, descriptionibus, observationibus. Officina Libraria Kortii, Flensburgi et Lipsiae, 832 pp. https://doi.org/10.5962/bhl.title.36510
  6. Felten, V., Baudoin, J.M. & Guérold, F. (2006) Physiological recovery from episodic acid stress does not mean population recovery of Gammarus fossarum. Chemosphere, 65 (6), 988–998. https://doi.org/10.1016/j.chemosphere.2006.03.059
  7. Gilbert, P., Bergmann, K.D., Boekelheide, N.T., Tambutté, S., Mass, T., Marin, F., Adkins, J.F., Erez, J., Gilbert, B., Knutson, V., Cantine, M., Hernández, J.O. & Knoll, A.H. (2022) Biomineralization: Integrating mechanism and evolutionary history. Science Advances, 8, eabl9653. https://doi.org/10.1126/sciadv.abl9653
  8. Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
  9. Hekmatara, M., Sari, A. & Heidari Baladehi, M.-H. (2011) Two new Gammarus species (Crustacea: Amphipoda: Gammaridae) from Zagros Mountains, Iran. Zootaxa, 2894 (1), 39–57. https://doi.org/10.11646/zootaxa.2894.1.3
  10. Hessen, D.O. & Rukke-Alstad, N. (2000) The cost of moulting in Daphnia; mineral regulation of carbon budgets. Freshwater Biology, 45, 169–178. https://doi.org/10.1046/j.1365-2427.2000.00670.x
  11. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285
  12. Karaman, G.S. (1969) Bemerkungen ber Gammarus komareki Schf., seine Taxonomie und Verbreitung. Fragments Balcanica, 7, 33–44.
  13. Karaman, G.S. & Pinkster, S. (1977a) Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea Amphipoda). Part I. Gammarus pulex-group and related species. Bijdragen Tot de Dierkunde, 47, 1–97. https://doi.org/10.1163/26660644-04701001
  14. Karaman, G.S. & Pinkster, S. (1977b) Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea Amphipoda).Part II. Gammarus roeseli-group and related species. Bijdragen Tot de Dierkunde, 47, 165–196. https://doi.org/10.1163/26660644-04702003
  15. Katouzian, A.-R., Sari, A., Macher, J.N., Weiss, M., Sa­boori, A., Leese, F. & Weigand, A.M. (2016) Dras­tic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Cau­casus biodiversity hotspots. Scientific Report, 6, 22507. https://doi.org/10.1038/srep22507
  16. Khalaji-Pirbalouty, V. & Sari, A. (2004) Biogeography of amphipods (Crustacea: Amphipoda: Gammaridae) from the central Zagros Mountains, Iran, with descriptions of two new species. Journal of Natural History, 38, 2425–2445. https://doi.org/10.1080/00222930310001647406
  17. Khalaji-Pirbalouty, V. & Sari, A. (2006) A Description of Gammarus baloutchi n. sp. (Amphipoda: Gammaridae) from Iran, based on light and electron microscopy. Zoologische Mededelingen, 80, 91–100.
  18. Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/BF01731581
  19. Koch, C.L. (1836) Deutschlands Crustaceen, Myriapoden und Arachniden. In: Ein Beitrag Zur Deutschen Fauna. 5 (1). G. A. W. Herrich-Schäfer, Regensburg, pp. 1–24.
  20. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096
  21. Lawrence, A.J. & Poulter, C. (1999) The effect of temperature on growth and survival of juvenile tropical marine amphipods (Gammarus spp.). Journal of Experimental Marine Biology and Ecology, 236 (1), 67–82. https://doi.org/10.1016/S0022-0981(98)00190-1
  22. MacNeil, C., Dick, J.T.A. & Elwood, R.W. (1997) The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): Problems and perspectives concerning the functional feeding group concept. Biological Reviews, 72 (3), 349–364. https://doi.org/10.1017/S0006323196005038
  23. Mateus, P.A. & Mateus, E. (1990) Etude d’une collection d’amphipodes specialement du sud-ouest asiatique-du Museum d’Histiore Naturelle de Vienne (Autriche). Annalen des Naturhistorisches Museums in Wien, 9, 273–331.
  24. Minh, B.Q., Nguyen, M.A.T. & Von Haeseler, A. (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30, 1188–1195. https://doi.org/10.1093/molbev/mst024
  25. Nguyen, L.T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300
  26. Özbek, M., Yurga, L. & Külköylüoğlu, O. (2013) Gammarus baysali sp. nov., a new freshwater amphipod species from Turkey (Amphipoda: Gammaridae). Turkish Journal of Zoology, 37, 163–171. https://doi.org/10.3906/zoo-1209-14
  27. Schäferna, K. (1922) Amphipoda balcanica. Vëstnik Kral. C. Spoleinosti Nauk Tiida Mat-Prir Praha, 2, 1–110.
  28. Stock, J.H., Mirzajani, A.R., Vonk, R., Naderi, S. & Kiabi, B.H. (1998) Limnic and brackish water Amphipoda (Crustacea) from Iran. Beaufortia, 48, 173–234.
  29. Stubbington, R., Hogan, J.P. & Wood, P.J. (2017) Characterization of the density and body size of a Gammarus pulex (Crustacea: Amphipoda) population in subsurface sediments reflects the sampling technique used. Hydrobiologia, 788, 293–303. https://doi.org/10.1007/s10750-016-3008-z
  30. Thompson, J.D., Higgins, D.G. & Gibson, T. (1994) Clustal W: improving the sensitivity of pro­gressive multiple sequence alignment through sequence weighting, position specific gap pen­alties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673
  31. Väinölä, R., Witt, J.D.S., Grabowski, M., Bradbury, J.H., Jazdzewski, K. & Sket, B. (2008) Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia, 595, 241–255. https://doi.org/10.1007/s10750-007-9020-6
  32. Verovnik, R., Sket, B. & Trontelj, P. (2005) The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Molecular Ecology, 14, 4355–4369. https://doi.org/10.1111/j.1365-294X.2005.02745.x
  33. Vittori, M. (2024) Structural diversity of crustacean exoskeletons and its implications for biomimetics. Interface Focus, 1420230075. [published online] https://doi.org/10.1098/rsfs.2023.0075
  34. Yemelyanova, A.Y., Temerova, T.A. & Degermendzhy, A.G. (2002) Distribution of Gammarus lacustris Sars (Amphipoda, Gammaridae) in Lake Shira (Khakasia, Siberia) and laboratory study of its growth characteristics. Aquatic Ecology, 36, 245–256. https://doi.org/10.1023/A:1015624205389
  35. Zakšek, V., Sket, B. & Trontelj, P. (2007) Phylogeny of the cave shrimp Troglocaris: evidence of a young connection between Balkans and Caucasus. Molecular Phylogenetics and Evolution, 42, 223–235. https://doi.org/10.1016/j.ympev.2006.07.009
  36. Zamanpoore, M., Poeckl, M., Grabowski, M. & Schiemer, F. (2009) Two new sympatric species of freshwater Gammarus (Crustacea: Amphipoda) from Southern Zagros Region, Iran. Zootaxa, 2136 (1)a, 21–39. https://doi.org/10.11646/zootaxa.2136.1.2
  37. Zamanpoore, M., Grabowski, M., Poeckl, M. & Schiemer, F. (2010) Two new Gammarus species (Crustacea, Amphipoda) from warm springs in the southeast pre-alpine area of the Zagros, Iran: habitats with physiological challenges. Zootaxa, 2546 (1), 31–51. https://doi.org/10.11646/zootaxa.2546.1.2
  38. Zamanpoore, M., Poeckl, M., Grabowski, M. & Schiemer, F. (2011) Taxonomic review of freshwater Gammarus (Crustacea: Amphipoda) from Iran, Zootaxa, 3140 (1), 1–14. https://doi.org/10.11646/zootaxa.3140.1.1

How to Cite

Moradi, B. & Esmaeili-Rineh, S. (2025) Completing the information gap in Gammarus anodon (Crustacea: Amphipoda) using molecular and ecological approaches. Zootaxa, 5618 (3), 393–410. https://doi.org/10.11646/zootaxa.5618.3.5