Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-04-15
Page range: 151-195
Abstract views: 200
PDF downloaded: 11

Taxonomic revision of the Perilampus carolinensis species complex (Hymenoptera: Chalcidoidea: Perilampidae), and the description of five new species

Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada, M5S 2C6; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada, M5S 2C6; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
Hymenoptera COI ITS2 key morphology new species parasitoid species delimitation systematics

Abstract

This study recognizes seven species in the Perilampus carolinensis species complex, primarily Neotropical species within the Perilampus hyalinus species group, by combining morphology and two genes (COI and ITS2). Perilampus arasy Yoo & Darling sp. nov., P. cabecar Yoo & Darling sp. nov., P. falcatus Yoo & Darling sp. nov., P. minasgerais Yoo & Darling sp. nov., and P. tupa Yoo & Darling sp. nov. are described and P. carolinensis Smulyan and P. regalis Smulyan are re-described with illustrations. An illustrated key is provided to facilitate species identification and host associations and distributions are discussed.

References

  1. Argaman, Q. (1990) A synopsis of Perilampus Latreille with descriptions of new genera and species (Hymenoptera, Perilampidae), II. Acta Zoologica Hungarica, 37 (1–2), 1–19.
  2. Brullé, M.A. (1846) Lepeletier de Saint-Fargeau. In: Histoire Naturelle des Insectes: Hyménoptères. Librairie encyclopédique de Roret, Paris, pp. 650.
  3. Cameron, P. (1904) New Hymenoptera, mostly from Nicaragua. Invertebrata Pacifica, 1, 59.
  4. Campbell, B.C., Steffen-Campbell, J.D. & Werren, J.H. (1993) Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect Molecular Biology, 2 (4), 224–237. https://doi.org/10.1111/j.1365-2583.1994.tb00142.x
  5. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109
  6. Darling, D.C. (1983) A review of the New World species of Euperilampus (Hymenoptera; Chalcidoidea), with notes about host associations and phylogenetic relationships. Quaestiones Entomologicae, 19, 1–40.
  7. Darling, D.C. (1996) Generic concepts in the Perilampidae (Hymenoptera: Chalcidoidea): an assessment of recently proposed genera. Journal of Hymenoptera Research, 5, 100–130.
  8. Darling, D.C. & Yoo, J. (2021) The Perilampidae of the United Arab Emirates and Yemen (Hymenoptera: Chalcidoidea). Zootaxa, 5020 (1), 101–129. https://doi.org/10.11646/zootaxa.5020.1.5
  9. Dinca, V., Lee, K.M., Vila, R. & Mutanen, M. (2019) The conundrum of species delimitation: a genomic perspective on a mitogenetically super-variable butterfly. Proceedings of the Royal Society B: Biological Sciences, 286 (1911), 20191311. https://doi.org/10.1098/rspb.2019.1311
  10. Eberle, J., Bazzato, E., Fabrizi, S., Rossini, M., Colomba, M., Cillo, D., Uliana, M., Sparacio, I., Sabatinelli, G., Warnock, R.C.N., Carpaneto, G. & Ahrens, D. (2019) Sex-biased dispersal obscures species boundaries in integrative species delimitation approaches. Systematic Biology, 68 (3), 441–459. https://doi.org/10.1093/sysbio/syy072
  11. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32 (5), 1792–1797. https://doi.org/10.1093/nar/gkh340
  12. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3 (5), 294–299.
  13. Gibson, G.A.P. (1997) Chapter 2. Morphology and terminology. In: Gibson, G.A.P., Huber, J.T. & Woolley, J.B. (Eds.), Annotated Keys to the Genera of Nearctic Chalcidoidea (Hymenoptera). National Research Council of Canada Research Press, Ottawa, pp. 16– 41.
  14. Girault, A.A. (1912) New chalcidoid genera and species from Paraguay. Archiv für Naturgeschichte, Series A, 78 (9), 160–177.
  15. Hajibabaei, M., deWaard, J.R., Ivanova, N.V., Ratnasingham, S., Dooh, R.T., Kirk, S.L., Mackie, P.M. & Hebert, P.D.N. (2005) Critical factors for assembling a high volume of DNA barcodes. Philosophical Transactions of the Royal Society: Biological Sciences, 360 (1462), 1959–1967. https://doi.org/10.1098/rstb.2005.1727
  16. Hansson, C., Smith, M.A., Janzen, D.H. & Hallwachs, W. (2015) Integrative taxonomy of New World Euplectrus Westwood (Hymenoptera, Eulophidae), with focus on 55 new species from Area de Conservación Guanacaste, northwestern Costa Rica. ZooKeys, 485, 1–236. https://doi.org/10.3897/zookeys.485.9124
  17. Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. & Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic diversity in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences, 101 (41), 14812–14817. https://doi.org/10.1073/pnas.0406166101
  18. Henry, L.M., Roitberg, B.D. & Gillespie, D.R. (2007) Host-range evolution in Aphidius parasitoids: fidelity, virulence and fitness trade-offs on an ancestral host. Evolution, 62 (3), 689–600. https://doi.org/10.1111/j.1558-5646.2007.00316.x
  19. Hinojosa, J.C., Koubinova, D., Szenteczki, Pitteloud, C., Dinca, V., Alvarez, N. & Vila, R. (2019) A mirage of cryptic species: Genomics uncover striking mitonuclear discordance in the butterfly Thymelicus sylvestris. Molecular Ecology, 28 (17), 3857–3868. https://doi.org/10.1111/mec.15153
  20. Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35 (2), 518–522.
  21. https://doi.org/10.1093/molbev/msx281
  22. Huelsenbeck, J.P., Ronquist, F., Nielson, R. & Bollback, J.P. (2001) Bayesian inference of phylogeny and its impacts on evolutionary biology. Science, 294 (5550), 2310–2314. https://doi.org/10.1126/science.1065889
  23. Ivanova, N.V., deWaard, J., Hebert, P.D.N. (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes, 6 (4), 998–1002. https://doi.org/10.1111/j.1471-8286.2006.01428.x
  24. Janzen, D.H., Hajibabaei, M., Burns, J.M., Hallwachs, W., Remigio, E. & Hebert, P.D.N. (2005) Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360 (1462), 1835–1845. https://doi.org/10.1098/rstb.2005.1715
  25. Janzen, D.H. & Hallwachs, W. (2009) Dynamic database for an inventory of the macrocaterpillar fauna, and its food plants and parasitoids, of Area de Conservacion Guanacaste (ACG), northwestern Costa Rica (nn-SRNP-nnnnn voucher codes). Available from: http://janzen.sas.upenn.edu/ (accessed 30 June 2021)
  26. Katoh, S. (2013) MAFFT: multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30 (4), 772–780. https://doi.org/10.1093/molbev/mst010
  27. Kelly, E.O.G. (1914) A new sarcophagid parasite of grasshoppers. Journal of Agricultural Research, 2 (6), 435–445.
  28. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35 (6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  29. Noyes, J.S. (2019) Universal Chalcidoidea Database. World Wide Web electronic publication. http://www.nhm.ac.uk/chalcidoids/ (accessed 6 February 2021)
  30. Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32 (1), 268–274. https://doi.org/10.1093/molbev/msu300
  31. Peck, O. (1963) A catalogue of the Nearctic Chalcidoidea (Insecta: Hymenoptera). The Canadian Entomologist Supplement, 30, 1–1092. https://doi.org/10.4039/entm9530fv
  32. Pitts, J.P., Tilgner, E.H. & Dalusky, M.J. (2002) New host records for Perilampus hyalinus (Hymenoptera: Perilampidae) and Phasmophaga antennalis (Diptera: Tachinidae). Journal of Entomological Science, 37 (1), 128–129.
  33. Polihronakis, M. (2010) The interface between phylogenetics and population genetics: investigating gene trees, species trees, and population dynamics in the Phyllophaga fraternal species group. Evolution, 64 (4), 1048–1062. https://doi.org/10.1111/j.1558-5646.2009.00884.x
  34. Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2011) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21 (8), 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
  35. Rambaut, A. (2018) FigTree. Version 1.4.4. Available from: https://github.com/rambaut/figtree/releases (accessed 10 March 2025)
  36. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior Summarization in Bayesian Phylogeny Using Tracer 1.7. Systematic Biology, 67 (5), 901–904. https://doi.org/10.1093/sysbio/syy032
  37. Ratnasingham, S. & Hebert, P.D.N. (2007) BOLD: the barcode of life data system (https://www.barcodi inglife.org). Molecular Ecology Notes, 7 (3), 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
  38. Ratnasingham, S. & Hebert, P.D.N. (2013) A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS One, 8 (7), e66213. https://doi.org/10.1371/journal.pone.0066213
  39. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., H¨ohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3), 539–542. https://doi.org/10.1093/sysbio/sys029
  40. Rubinoff, D., Cameron, S. & Will, K. (2006) A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. Journal of Heredity, 97 (6), 581–594. https://doi.org/10.1093/jhered/esl036
  41. Smulyan, M.T. (1936) A revision of the chalcid flies of the genus Perilampus Latreille occurring in America north of Mexico. Proceedings of the United States National Museum, 83, 369–412. https://doi.org/10.5479/si.00963801.2990.369
  42. Swofford, D.L. (2003) PAUP*. Phylogenetic analysis using parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachsetts. [program]
  43. Teixeira, E.P. & Casari-Chen, S.A. (1992) Description of larvae and pupae of Stichotaenia conviva (Stal, 1858) and S. fasciatomaculata (Stal, 1857), with biological notes on the specis (Coleoptera: Chrysomelidae: Chrysomelinae). Revista Brasileira de Entomologia, 36 (4), 779–786.
  44. Yoo, J.J. (2023) Species delimitation and phylogenetic relationships of the Perilampus hyalinus species group and the description of six new species (Order No. 30245611). Available from Dissertations & Theses @ University of Toronto; ProQuest Dissertations & Theses Global; ProQuest Dissertations & Theses Global Closed Collection. (2832649826). Available from: https://www.proquest.com/docview/2832649826 (accessed 10 March 2025)
  45. Yoo, J.J. & Darling, D.C. (2024) Integrative taxonomic revision of the Nearctic Perilampus hyalinus species complex (Hymenoptera: Chalcidoidea: Perilampidae) resolves 100 years of confusion about the host associations of P. hyalinus Say. Journal of Hymenoptera Research, 97, 1301–1383. https://doi.org/10.3897/jhr.97.133255
  46. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29 (22), 2869–2876. https://doi.org/10.1093/bioinformatics/btt499

How to Cite

Yoo, J.J. & Darling, D.C. (2025) Taxonomic revision of the Perilampus carolinensis species complex (Hymenoptera: Chalcidoidea: Perilampidae), and the description of five new species. Zootaxa, 5621 (2), 151–195. https://doi.org/10.11646/zootaxa.5621.2.1