Abstract
Understanding biogeographical patterns is a challenging task, particularly in the case of poorly studied organisms, whose phylogenetic affinities and ecological needs are not yet understood. Such a case is common among invertebrates and particularly among insects, whose extensive diversity may hamper full and deep comprehension of their ecological and evolutionary patterns. Within insects, orthopterans also represent a relatively poorly studied group. Building knowledge upon biogeography and evolution of orthopterans may provide key insights to their conservation, especially in the case of range-restricted taxa that are inherently more vulnerable, and prone to extinction. In this study we thus applied an integrated approach, combining DNA-barcoding and ecological niche modelling, for investigating the diversity of wart biters (Orthoptera Tettigoniidae, genus Decticus). We particularly aimed at providing a first screening of the molecular identity of species within the genus, and an assessment of their macro-ecological needs. We analysed mitochondrial DNA (cytochrome oxidase I COI) and bioclimatic niche data for the four Decticus species that occur in the Italian Peninsula (D. verrucivorus, D. albifrons, D. loudoni, and D. aprutianus), reconstructing their phylogenetic relationships based on molecular approaches, and comparing their ecological preferences. We provide COI sequences for all the species found in Italy, including the first one available for two endemic ones. We found a clear molecular differentiation among the four species, with D. albifrons being the most distinct and basal taxon, as based on the COI sequence adopted. Our results also bring evidence of significant ecological niche differentiation, with each species occupying a distinct portion of the climatic space available within Italy. Notably, the two range-restricted and short-winged species, D. loudoni and D. aprutianus, result as sister taxa according to COI, and exhibit greater ecological specialisation compared to the more widespread species. Besides, we also highlight significant intra-taxon diversity for both D. verrucivorus sensu stricto and D. albifrons, suggesting that further research on potential intraspecific variability may be needed to clarify the taxonomic position of Italian populations. The observed genetic divergence and ecological niche differentiation found among wart biters suggest that adaptation to different ecological conditions may have played a role in the diversification of these range-restricted species. Our results confirmed the importance of the Italian Peninsula as a biodiversity hotspot for Orthoptera and provide a solid baseline for more in-depth molecular studies, besides providing novel sequences that may be used for e.g., DNA metabarcoding or eDNA campaigns. Further research is in fact needed to explore the specific ecological factors driving niche differentiation in this and other taxa, and to investigate the evolutionary pathways that led to the genus’ current diversity and distribution.
References
- Amori, G. & Castiglia, R. (2018) Mammal endemism in Italy: a review. Biogeographia, 3, 19–31. https://doi.org/10.21426/B633035335
- Ancillotto, L., Viviano, A., Baratti, M., Sogliani, D., Ladurner, E. & Mori, E. (2023) Every branch in its niche: intraspecific variation in habitat suitability of a widely distributed small mammal, the harvest mouse Micromys minutus. Mammal Research, 68, 575–585. https://doi.org/10.1007/s13364-023-00693-3
- Ancillotto, L. & Labadessa, R. (2024) Functional traits drive the fate of Orthoptera in urban areas. Insect Conservation and Diversity, 17, 304–311. https://doi.org/10.1111/icad.12683
- Basille, M., Calenge, C., Marboutin, É., Andersen, R. & Gaillard, J.M. (2008) Assessing habitat selection using multivariate statistics: Some refinements of the ecological-niche factor analysis. Ecological Modelling, 211, 233–240. https://doi.org/10.1016/j.ecolmodel.2007.09.006
- Bogdanowicz, W., Hulva, P., Černá Bolfíková, B., Buś, M.M., Rychlicka, E., Sztencel-Jabłonka, A., Cistrone, L. & Russo, D. (2015) Cryptic diversity of Italian bats and the role of the Apennine refugium in the phylogeography of the western Palaearctic. Zoological Journal of the Linnean Society, 174, 635–648. https://doi.org/10.1111/zoj.12248
- Carne, C. (2017) Predicting habitat suitability for the wart-biter bush cricket (Decticus verrucivorus) in Europe. Journal of Insect Conservation, 21, 287–295. https://doi.org/10.1007/s10841-017-9975-1
- Canestrelli, D., Cimmaruta, R. & Nascetti, G. (2008) Population genetic structure and diversity of the Apennine endemic stream frog, Rana italica–insights on the Pleistocene evolutionary history of the Italian peninsular biota. Molecular Ecology, 17, 3856–3872. https://doi.org/10.1111/j.1365-294X.2008.03870.x
- Ceccolini, F., Pizzocaro, L. & Cianferoni, F. (2020) New records of Orthoptera from Molise (Southern Italy) with an updated provisional checklist. Fragmenta Entomologica, 52, 85–99. https://doi.org/10.13133/2284-4880/416
- Cherrill, A.J. & Brown, V.K. (1990) The habitat requirements of adults of the Wart-biter Decticus verrucivorus (L.) (Orthoptera: Tettigoniidae) in Southern England. Biological Conservation, 53, 145–157. https://doi.org/10.1016/0006-3207(90)90005-A
- Cherrill, A.J. & Brown, V.K. (1992) Variation in body size between heathland and chalk grassland populations of the bush-cricket, Decticus verrucivorus (L.) (Orthoptera: Tettigoniidae), in southern England. Entomologist’s Gazette, 43, 77–82.
- Curto, J.D. & Pinto, J.C. (2011) The corrected vif (cvif). Journal of Applied Statistics, 38, 1499–1507. https://doi.org/10.1080/02664763.2010.505956
- Dapporto, L. (2010) Speciation in Mediterranean refugia and post‐glacial expansion of Zerynthia polyxena (Lepidoptera, Papilionidae). Journal of Zoological Systematics and Evolutionary Research, 48, 229–237. https://doi.org/10.1111/j.1439-0469.2009.00550.x
- DeMiguel, D. (2016) Disentangling adaptive evolutionary radiations and the role of diet in promoting diversification on islands. Scientific Reports, 6, 29803. https://doi.org/10.1038/srep29803
- Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315.
- Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology Biotechnology, 3, 294–299.
- Fontana, P., Odè, B. & Malagnini, V. (1999) On the identity of Decticus loudoni Ramme, 1933 (Insecta Orthoptera Tettigoniidae). Bollettino dell’Istituto di Entomologia “Giulio Grandi” dell’Università degli Studi di Bologna, 53, 71–85.
- Glor, R.E. (2010) Phylogenetic insights on adaptive radiation. Annual Review of Ecology, Evolution, and Systematics, 41, 251–270. https://doi.org/10.1146/annurev.ecolsys.39.110707.173447
- Götz, W. (1970) Zur Gröbenvariation im Formenkreis Decticus verrucivorus (Orthoptera, Saltatoria, Tettigoniidae). Zoologische Abhandlungen Museum Tierkunde Dresden, 31, 139–191.
- Homburg, K., Brandt, P., Drees, C. & Assmann, T. (2014) Evolutionarily significant units in a flightless ground beetle show different climate niches and high extinction risk due to climate change. Journal of Insect Conservation, 18, 781–790. https://doi.org/10.1007/s10841-014-9685-x
- Huemer, P., Mutanen, M., Sefc, K.M. & Hebert, P.D. (2014) Testing DNA barcode performance in 1000 species of European Lepidoptera: large geographic distances have small genetic impacts. PLos One, 9, e115774. https://doi.org/10.1371/journal.pone.0115774
- Iorio, C., Scherini, R., Fontana, P., Buzzetti, F.M., Kleukers, R., Odè, B. & Massa, B. (2019) Grasshoppers and crickets of Italy. A photographic field guide to all species. WBA Handbooks Editions, Verona, Italy.
- Kassen, R., Llewellyn, M. & Rainey, P.B. (2004) Ecological constraints on diversification in a model adaptive radiation. Nature, 431, 984–988. https://doi.org/10.1038/nature02923
- Koot, E.M., Morgan-Richards, M. & Trewick, S.A. (2022) Climate change and alpine-adapted insects: modelling environmental envelopes of a grasshopper radiation. Royal Society Open Science, 9, 211596. https://doi.org/10.1098/rsos.211596
- Labadessa, R. & Ancillotto, L. (2022) A tale of two crickets: global climate and local competition shape the distribution of European Oecanthus species (Orthoptera, Gryllidae). Frontiers of Biogeography, 14, e57538. https://doi.org/10.21425/F5FBG57538
- Löffler, F., Poniatowski, D. & Fartmann, T. (2019) Orthoptera community shifts in response to land-use and climate change–Lessons from a long-term study across different grassland habitats. Biological Conservation, 236, 315–323. https://doi.org/10.1016/j.biocon.2019.05.058
- Massa, B. (2013) Importanza della bioacustica nella sistematica degli Ortotteri. Atti Accademia nazionale Italiana di Entomologia, 61, 33–41.
- Massa, B. & Fontana, P. (2020) Endemism in Italian Orthoptera. Biodiversity Journal, 11, 405–434. https://doi.org/10.31396/Biodiv.Jour.2020.11.2.401.434
- Mattoccia, M., Marta, S., Romano, A. & Sbordoni, V. (2011) Phylogeography of an Italian endemic salamander (genus Salamandrina): glacial refugia, postglacial expansions, and secondary contact. Biological Journal of the Linnean Society, 104, 903–992. https://doi.org/10.1111/j.1095-8312.2011.01747.x
- McCulloch, G.A., Foster, B.J., Dutoit, L., Harrop, T.W., Guhlin, J., Dearden, P.K. & Waters, J.M. (2021) Genomics reveals widespread ecological speciation in flightless insects. Systematic Biology, 70, 863–876. https://doi.org/10.1093/sysbio/syaa094
- Menchetti, M., Talavera, G., Cini, A., Salvati, V., Dincă, V., Platania, L., Bonelli, S., Balletto, E., Vila, R. & Dapporto, L. (2021) Two ways to be endemic. Alps and Apennines are different functional refugia during climatic cycles. Molecular Ecology, 30, 1297–1310. https://doi.org/10.1111/mec.15795
- Mori, E., Nerva, L. & Lovari, S. (2019) Reclassification of the serows and the gorals: the end of a neverending story? Mammal Review, 49, 256–262. https://doi.org/10.1111/mam.12154
- Mori, E., Ancillotto, L., Viviano, A., Sogliani, D., Amori, G., Vella, F., Boano, G., Bertolino, S. & Monti, F. (2024) Anthropogenic dispersal explains the phylogeography of insular edible dormouse Glis glis in the Mediterranean basin. Mammal Research, 69, 401–410. https://doi.org/10.1007/s13364-024-00754-1
- Naimi, B. & Araujo, M.B. (2016) SDM: a reproducible and extensible R platform for species distribution modelling. Ecography, 39, 368–375. https://doi.org/10.1111/ecog.01881
- Panhwar, W.A., Sultana, R. & Wagan, M.S. (2017) Taxonomy of genus Decticus Serville, 1831 (Decticinae: Tettigoniidae: Orthoptera). Journal of Entomology and Zoology Studies, 5, 1100–1104.
- Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin, W.D. & Vogler, A.P. (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55, 595–609. https://doi.org/10.1080/10635150600852011
- Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic barcode gap discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
- Reis, T.S., Ciampi‐Guillardi, M., Bajay, M.M., de Souza, A.P. & Dos Santos, F.A.M. (2015) Elevation as a barrier: genetic structure for an Atlantic rain forest tree (Bathysa australis) in the Serra do Mar mountain range, SE Brazil. Ecology and Evolution, 5, 1919–1931. https://doi.org/10.1002/ece3.1501
- Ribeiro Leite, L.A. (2012) Mitochondrial pseudogenes in insect DNA barcoding: differing points of view on the same issue. Biota Neotropica, 12, 301–308. https://doi.org/10.1590/S1676-06032012000300029
- Rinnan, D.S. & Lawler, J. (2019) Climate‐niche factor analysis: a spatial approach to quantifying species vulnerability to climate change. Ecography, 42, 1494–1503. https://doi.org/10.1111/ecog.03937
- Rundle, H.D. & Nosil, P. (2005) Ecological speciation. Ecology Letters, 8, 336–352. https://doi.org/10.1111/j.1461-0248.2004.00715.x
- Salces-Castellano, A., Andújar, C., López, H., Pérez-Delgado, A.J., Arribas, P. & Emerson, B.C. (2021) Flightlessness in insects enhances diversification and determines assemblage structure across whole communities. Proceedings of the Royal Society B, 288, 20202646. https://doi.org/10.1098/rspb.2020.2646
- Samways, M.J. & Harz, K. (1982) Biogeography of intraspecific morphological variation in the bush crickets Decticus verrucivorus (L.) and D. albifrons (F.) (Orthoptera: Tettigoniidae). Journal of Biogeography, 9, 243–254.
- Samways, M.J. & Lockwood, J.A. (1998) Orthoptera conservation: pests and paradoxes. Journal of Insect Conservation, 2, 143–149.
- Schluter, D. (2009) Evidence for ecological speciation and its alternative. Science, 323, 737–741. https://doi.org/10.1126/science.1160006
- Sergeev, M.G., Molodtsov, V.V. & Storozhenko, S.Y. (2023) New data on distribution of Decticus nigrescens Tarbinsky, 1930 (Orthoptera: Tettigoniidae) in Russia. Far Eastern Entomologist, 487, 21–28.
- Serville, J.G.A. (1838) Decticus monspeliensis Rambur, 1838. In: Serville, J.G.A. (Ed.), Histoire naturelle des insectes. Orthoptères. Librairie Encyclopédique de Roret Editions, Paris, pp. 1–776.
- Song, H., Buhay, J.E., Whiting, M.F. & Crandall, K.A. (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America, 105, 13486–13491. https://doi.org/10.1073/pnas.0803076105
- Stankowski, S. & Ravinet, M. (2021) Defining the speciation continuum. Evolution, 75, 1256–1273. https://doi.org/10.1111/evo.14215
- Stoch, F. (2000) How many endemic species? Species richness assessment and conservation priorities in Italy. Belgian Journal of Entomology, 2, 125–133. https://doi.org/10.1111/evo.14215
- Stolyarov, M.V. (2005) New data on distribution and taxonomy of the Orthoptera from Caucasus. 1. Stenopelmatoidea and Tettigonioideа. Proceedings of the Russian Entomological Society, San Petersburg, 76, 62–71.
- Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology Evolution, 38, 3022–3027. https://doi.org/10.1093/molbev/msab120
- Tienstra, R.T. (1993) Dimensions in two coastal populations of the wartbiter (Decticus verrucivorus (L.)) in relation to biotope. Nieuwsbrief Saltabel, 9, 13–16.
- Ton, L., Morin, D., Foucart, A., Catil, J.M. & Nabholz, B. (2023) Le Dectique verrucivore, Decticus verrucivorus (Linnaeus, 1758), en France continentale: étude morphologique et implications taxonomiques (Orthoptera: Tettigoniidae). Materiaux Orthopteriques et Entomocenotiques, 28, 45–68.
- Vences, M., Miralles, A., Brouillet, S., Ducasse, J., Fedosov, A., Kharchev, V., Kostadinov, I., Kumari, S., Padmanidis, S., Scherz, M.D., Puillandre, N. & Renner, S.S. (2021) iTaxoTools 0.1: Kickstarting a specimen-based software toolkit for taxonomists. Megataxa, 6, 77–92. https://doi.org/10.11646/megataxa.6.2.1
- Vences, M., Patmanidis, S., Schmidt, J.C., Matschiner, M., Miralles, A. & Renner, S.S. (2024) Hapsolutely: a user-friendly tool integrating haplotype phasing, network construction and haploweb calculation. Bioinformatics Advances, 4, vbae083. https://doi.org/10.1093/bioadv/vbae083
- Voje, K.L., Hemp, C., Flagstad, Ø., Saetre, G.P. & Stenseth, N.C. (2009) Climatic change as an engine for speciation in flightless Orthoptera species inhabiting African mountains. Molecular Ecology, 18, 93–108. https://doi.org/10.1111/j.1365-294X.2008.04002.x
- Warheit, K.I., Forman, J.D., Losos, J.B. & Miles, D.B. (1999) Morphological diversification and adaptive radiation: a comparison of two diverse lizard clades. Evolution, 53, 1226–1234. https://doi.org/10.1111/j.1365-294X.2008.04002.x
- Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499