Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-08-27
Page range: 277-293
Abstract views: 105
PDF downloaded: 26

Checklist of earthworm species Annelida, Oligochaetain Algeria

Laboratory of Toxicology; Environment; and Health (LATES). University of Science and Technology of Oran-Mohammed Boudiaf. Algeria. Bir El Djir 31000; Oran; Algeria.
Laboratory of Toxicology; Environment; and Health (LATES). University of Science and Technology of Oran-Mohammed Boudiaf. Algeria. Bir El Djir 31000; Oran; Algeria.
INRAE; Avignon University; UMR EMMAH; F-84000; Avignon; France.
Annelida Catalogue Clitellata Zoogeography Mediterranean

Abstract

Earthworms are soil engineers that provide key functions and contribute to numerous ecosystem services including plant production. Little is known about the diversity, ecology, distribution and habitats of earthworm populations in Algeria. In this review article, all scientific studies on earthworms (Annelida, Oligochaeta) in Algeria were collected in order to provide a comprehensive inventory of knowledge on earthworm populations (i.e., occurrence, distribution and habitats) in the country. Among 24 studies and 346 earthworm sampling sites, a total of 40 earthworm species, 20 genera and 8 families (Lumbricidae, Acanthodrilidae, Criodrilidae, Glossoscolecidae, Haplotaxidae, Hormogastridae, Megascolecidae, Ocnerodrilidae) were recorded. The most frequently collected species were the endogeics Aporrectodea rosea and Aporrectodea caliginosa, with occurrences of 41% and 37%, respectively which could be misleading due to nomenclatorial issues. The species were mostly found in arable lands although listed in a wide range of habitats. Arable lands were the most frequently sampled habitats (19% of the samples) in Algeria followed by inland water borders (11%). This exhaustive review of the literature may be used as a basis for further monitoring studies of earthworm diversity and abundance under different land uses and climate zones in Algeria.

 

References

  1. Ababsa, N., Kribaa, M., Tamrabet, L., Addad, D., Hallaire, V. & Ouldjaoui, A. (2020) Long-term effects of wastewater reuse on hydro physicals characteristics of grassland grown soil in semi-arid Algeria. Journal of King Saud University - Science, 32 (1), 1004–1013. https://doi.org/10.1016/j.jksus.2019.09.007
  2. Ababsa, N., Laiche, A. & Djabbar, F. (2017) Abundance and species richness of lombric macrofauna in a semi-arid forest ecosystem. Journal of Fundamental and Applied Sciences, 9 (3), 1634. https://doi.org/10.4314/jfas.v9i3.24
  3. AKhila, A. & Entoori, K. (2022) Role of earthworms in soil fertility and its impact on agriculture: A review. International Journal of Fauna and Biological Studies, 9 (3), 55–63. https://doi.org/10.22271/23940522.2022.v9.i3a.907
  4. Anthony, M.A., Bender, S.F. & Van Der Heijden, M.G.A. (2023) Enumerating soil biodiversity. Proceedings of the National Academy of Sciences, 120 (33), e2304663120. https://doi.org/10.1073/pnas.2304663120
  5. Anuja, R., Narayanan, S.P., Sathrumithra, S., Thomas, A.P. & Julka, J.M. (2023) Diversity of Earthworms in Different Land Use Systems of Kottayam District, Kerala, India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 93 (1), 27–44. https://doi.org/10.1007/s40011-022-01397-5
  6. Baha, M. (1997) The earthworm fauna of Mitidja, Algeria. Tropical Zoology, 10 (2), 247–254. https://doi.org/10.1080/03946975.1997.10539340
  7. Barros, F., Carracedo, A. & Cosín, D.D. (1992) Karyological and allozymic study of Allolobophora molleri complex and related taxa. Initial results. Soil Biology and Biochemistry, 24 (12), 1241–1245. https://doi.org/10.1016/0038-0717(92)90100-C
  8. Bazri, K.-E., Ouahrani, G., Gheribi-Aoulmi, Z. & Díaz Cosín, D.J. (2013) La diversité des lombriciens dans l’Est algérien depuis la côte jusqu’au désert. Ecologia mediterranea, 39 (2), 5–17. https://doi.org/10.3406/ecmed.2013.1276
  9. Beddard, F.E. (1892) On the Earthworms collected in Algeria and Tunisia by Dr. Anderson. Zoological Society of London, 1892, 28–37.
  10. Bertrand, M., Barot, S., Blouin, M., Whalen, J., De Oliveira, T. & Roger-Estrade, J. (2015) Earthworm services for cropping systems. A review. Agronomy for Sustainable Development, 35 (2), 553–567. https://doi.org/10.1007/s13593-014-0269-7
  11. Bohlen, P.J., Edwards, W.M. & Edwards, C.A. (1995) Earthworm community structure and diversity in experimental agricultural watersheds in Northeastern Ohio. Plant and Soil, 170 (1), 233–239. https://doi.org/10.1007/BF02183069
  12. Bottinelli, N., Hedde, M., Jouquet, P. & Capowiez, Y. (2020) An explicit definition of earthworm ecological categories – Marcel Bouché’s triangle revisited. Geoderma, 372, 114361. https://doi.org/10.1016/j.geoderma.2020.114361
  13. Bouché, M. (1972) Lombriciens de france. Ecologie et Sytemetique. Institut nationale de la Recherche Agronomique, 149, rue de grenelle, 75-Paris, 672 pp.
  14. Briones, M.J.I., Ostle, N.J., McNamara, N.P. & Poskitt, J. (2009) Functional shifts of grassland soil communities in response to soil warming. Soil Biology and Biochemistry, 41 (2), 315–322. https://doi.org/10.1016/j.soilbio.2008.11.003
  15. Černosvitov, L. (1933) Note sur les oligochetes d’Algerie. Bulletin de la Societe d’Histoire Naturelle deAfrique du Nord, 24 (8), 255–258.
  16. Csuzdi, C., Koo, J. & Hong, Y. (2022) The complete mitochondrial DNA sequences of two sibling species of lumbricid earthworms, Eisenia fetida (Savigny, 1826) and Eisenia andrei (Bouché, 1972) (Annelida, Crassiclitellata): comparison of mitogenomes and phylogenetic positioning. ZooKeys, 1097, 167–181. https://doi.org/10.3897/zookeys.1097.80216
  17. Cuartero, J., Briones, M.J.I., Rast, B.M., Stierli, B., Maurer-Troxler, C., Hug, A.-S., Widmer, F., Schlaghamerský, J. & Frey, B. (2025) Earthworm and enchytraeid indicator taxa of different land-use types identified using soil DNA metabarcoding. Applied Soil Ecology, 206, 105891. https://doi.org/10.1016/j.apsoil.2025.105891
  18. Decaëns, T., Brown, G.G., Cameron, E.K., Csuzdi, C., Eisenhauer, N., Gérard, S., Goulpeau, A., Hedde, M., James, S.W., Lapied, E., Maggia, M.-E., Marchán, D.F., Mathieu, J., Phillips, H.R.P. & Marcon, E. (2024) A can of worms: estimating the global number of earthworm species. bioRxiv, 2024b.09.08.611896. https://doi.org/10.1101/2024.09.08.611896
  19. Díaz Cosín, D.J., Ruiz, M.P., Ramajo, M. & Gutiérrez, M. (2006) Is the aestivation of the earthworm Hormogaster elisae a paradiapause? Invertebrate Biology, 125 (3), 250–255. https://doi.org/10.1111/j.1744-7410.2006.00057.x
  20. Dupont, L., Brunet, C.-M., Fourcade, Y., James, S., Gabriac, Q. & Coulis, M. (2023) Recording earthworm diversity on the tropical island of Martinique using DNA barcoding unveiled endemic species in bromeliad plants. Soil Biology and Biochemistry, 182, 109038. https://doi.org/10.1016/j.soilbio.2023.109038
  21. Edwards, C.A. & Arancon, N.Q. (2022) The Role of Earthworms in Organic Matter and Nutrient Cycles. In: Edwards, C.A. & Arancon, N.Q. (Eds.), Biology and Ecology of Earthworms. Springer US, New York, New York, pp. 233–274. https://doi.org/10.1007/978-0-387-74943-3_8
  22. Etesami, H. & Jin, Y. (2025) Boosting soil water retention in drought-affected farming: role of beneficial microbes and earthworms. In: Sustainable Agriculture under Drought Stress. Elsevier, Amsterdam, pp. 435–453. https://doi.org/10.1016/B978-0-443-23956-4.00026-0
  23. Fernández, R., Almodóvar, A., Novo, M., Simancas, B. & Díaz Cosín, D.J. (2012) Adding complexity to the complex: New insights into the phylogeny, diversification and origin of parthenogenesis in the Aporrectodea caliginosa species complex (Oligochaeta, Lumbricidae). Molecular Phylogenetics and Evolution, 64 (2), 368–379. https://doi.org/10.1016/j.ympev.2012.04.011
  24. Fonte, S.J., Hsieh, M. & Mueller, N.D. (2023) Earthworms contribute significantly to global food production. Nature Communications, 14 (1), 5713. https://doi.org/10.1038/s41467-023-41286-7
  25. Gagneur, J., Giani, N. & Martínez-Ansemil, E. (1986) Les Oligochètes aquatiques d’Algérie. Bulletin de la Société d’Histoire naturelle de Toulouse, 122 (1986), 119–124.
  26. Gérard, S., Decaëns, T., Butt, K.R., Briones, M.J., Capowiez, Y., Cluzeau, D., Hoeffner, K., Le Bayon, R.-C., Marchán, D.F. & Marsden, C. (2025) Putting earthworm conservation on the map: Shortfalls and solutions for developing earthworm conservation. Biological Conservation, 302, 110911. https://doi.org/10.1016/j.biocon.2024.110911
  27. Hallam, J. & Hodson, M.E. (2020) Impact of different earthworm ecotypes on water stable aggregates and soil water holding capacity. Biology and Fertility of Soils, 56 (5), 607–617. https://doi.org/10.1007/s00374-020-01432-5
  28. Hamed, M.M., Sobh, M.T., Ali, Z., Nashwan, M.S. & Shahid, S. (2024) Aridity shifts in the MENA region under the Paris Agreement climate change scenarios. Global and Planetary Change, 104483. https://doi.org/10.1016/j.gloplacha.2024.104483
  29. Intergovernmental Panel On Climate Change (Ipcc) (2023) Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 1st Edition. Cambridge University Press, Cambridge. Available from: https://www.cambridge.org/core/product/identifier/9781009325844/type/book (accessed 4 April 2025) https://doi.org/10.1017/9781009325844
  30. Qiu, J. & Bouché, M. (1998) PU 338 Chronologie Nouvelles stations d’études de lombriciens et relation des taxons à celles ci.
  31. Kherbouche, D., Bernhard-Reversat, F., Moali, A. & Lavelle, P. (2012) The effect of crops and farming practices on earthworm communities in Soummam valley, Algeria. European Journal of Soil Biology, 48, 17–23. https://doi.org/10.1016/j.ejsobi.2011.09.006
  32. Latif, R., Malek, M., Aminjan, A.R., Pasantes, J.J., Briones, M.J.I. & Csuzdi, C. (2020) Integrative taxonomy of some Iranian peregrine earthworm species using morphology and barcoding (Annelida: Megadrili). Zootaxa, 4877 (1), 163–173. https://doi.org/10.11646/zootaxa.4877.1.7
  33. Li, Y., Wang, J. & Shao, M. (2021a) Assessment of earthworms as an indicator of soil degradation: A case‐study on loess soils. Land Degradation & Development, 32 (8), 2606–2617. https://doi.org/10.1002/ldr.3928
  34. Li, Y., Wang, J. & Shao, M. (2021b) Effects of earthworm casts on water and salt movement in typical Loess Plateau soils under brackish water irrigation. Agricultural Water Management, 252, 106930. https://doi.org/10.1016/j.agwat.2021.106930
  35. Maggia, M.-E., Decaëns, T., Lapied, E., Dupont, L., Roy, V., Schimann, H., Orivel, J., Murienne, J., Baraloto, C., Cottenie, K. & Steinke, D. (2021) At each site its diversity: DNA barcoding reveals remarkable earthworm diversity in neotropical rainforests of French Guiana. Applied Soil Ecology, 164, 103932. https://doi.org/10.1016/j.apsoil.2021.103932
  36. Marchán, D.F., Navarro, A.M., Pinadero, S.J., Gerard, S., Hedde, M., Domínguez, J., Decaëns, T. & Novo, M. (2023) Understanding the diversification and functional radiation of Aporrectodea (Crassiclitellata, Lumbricidae) through molecular phylogenetics of its endemic species. European Journal of Soil Biology, 119, 103559. https://doi.org/10.1016/j.ejsobi.2023.103559
  37. McDaniel, J.P., Barbarick, K.A., Stromberger, M.E. & Cranshaw, W. (2013) Survivability of Aporrectodea caliginosa in Response to Drought Stress in a Colorado Soil. Soil Science Society of America Journal, 77 (5), 1667–1672. https://doi.org/10.2136/sssaj2013.02.0064
  38. MedECC (2020) Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future. First Mediterranean Assessment Report. Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, 632 pp. [Cramer, W., Guiot, J. & Marini, K. (Eds.)] https://doi.org/10.5281/ZENODO.7224821
  39. Michaelsen, W. (1900) Oligochaeta. Friedländer and Shon, Berlin, 557 pp. https://doi.org/10.5962/bhl.title.11605
  40. Michaelsen, W. (1903) Die geographische verbreitung der oligochaeten. R. Friedländer & Sohn, Berlin, 186 pp. https://doi.org/10.5962/bhl.title.11667
  41. Michaelsen, W. (1938a) On a collection of african oligochaeta in british museum. Zoological Society of London (B), 107 (1937), 501–528. https://doi.org/10.1111/j.1096-3642.1938.tb00010.x
  42. Michaelsen, W. (1938b) On a Collection of African Oligochæta in the British Museum. Proceedings of the Zoological Society of London, B107 (4), 501–528. https://doi.org/10.1111/j.1096-3642.1938.tb00010.x
  43. Navarro, A.M., Pinadero, S.J., Decaëns, T., Hedde, M., Novo, M., Trigo, D. & Marchán, D.F. (2023) Catch-All No More: Integrative Systematic Revision of the Genus Allolobophora Eisen, 1874 (Crassiclitellata, Lumbricidae) with the Description of Two New Relict Earthworm Genera Muddassir Ali, M. (Ed). Journal of Zoological Systematics and Evolutionary Research, 2023, 1–14. https://doi.org/10.1155/2023/5479917
  44. Omodeo, P. & Martinucci, G. (1987) Earthworms of Maghreb. In on earthworms, selected Symposia and Monographs U.Z.I, (2), 235–250.
  45. Omodeo, P., Rota, E. & Baha, M. (2003) The megadrile fauna (Annelida: Oligochaeta) of Maghreb: a biogeographical and ecological characterization. Pedobiologia, 47 (5–6), 458–465. https://doi.org/10.1078/0031-4056-00213
  46. Opute, P.A. & Maboeta, M.S. (2022) A REVIEW OF THE IMPACT OF EXTREME ENVIRONMENTAL FACTORS ON EARTHWORM ACTIVITIES AND THE FEEDBACK ON THE CLIMATE. Applied Ecology and Environmental Research, 20 (4), 3277–3297. https://doi.org/10.15666/aeer/2004_32773297
  47. Orgiazzi, A. (2022) What is soil biodiversity? Conservation Letters, 15 (1), e12845. https://doi.org/10.1111/conl.12845
  48. Paoletti, M.G., Sommaggio, D., Favretto, M.R., Petruzzelli, G., Pezzarossa, B. & Barbafieri, M. (1998) Earthworms as useful bioindicators of agroecosystem sustainability in orchards and vineyards with different inputs. Applied Soil Ecology, 10 (1–2), 137–150. https://doi.org/10.1016/S0929-1393(98)00036-5
  49. Pelosi, C., Petit-Dit-Grezeriat, L., Ratsiatosika, O. & Blanchart, E. (2024) Earthworm Contributions to Agricultural Sustainability. In: Kooch, Y. & Kuzyakov, Y. (Eds.), Earthworms and Ecological Processes. Springer Nature Switzerland, Cham, pp. 291–319. https://doi.org/10.1007/978-3-031-64510-5_10
  50. Reynolds, J. (1977) Earthworms utilized by the American woodcock. Proceedings of the Woodcock Symposium, 6, 161–169.
  51. Reynolds, J.W. (2018) Preliminary Key to Algerian Megadriles (Annelida, Clitellata, Oligochaeta), Based on External Characters, Insofar as Possible. Megadrilogica, 24 (1), 1–16.
  52. Rouabah, L. & Descamps, M. (2001) Biologie des oligochètes lumbricus terrestris, allolobophora chlorotica et dendrobaena pygmea dans le constantinois (Est Algérien). Bulletin de la Société zoologique de France, 126 (1–2), 49–58.
  53. Schmidt, O. (2024) City Dwellers: Earthworms in Urban Ecosystems. In: Kooch, Y. & Kuzyakov, Y. (Eds,), Earthworms and Ecological Processes. Springer Nature Switzerland, Cham, pp. 243–264. https://doi.org/10.1007/978-3-031-64510-5_8
  54. Sekhara Baha, M. (2008) Etude bioecologique des oligochetes de Nord de l’algerie. Institut Nationale Agronomique El-Harrache.
  55. Trigo, D., Mascato, R., Briones, M.I. & Diaz Cosin, D. (1990) Lombrices de tierra de Portugal continental. Inventario y citas. Arquivos do Museu Bocage, 1, 521–567.
  56. Trigo, D., Mato, S., Souto, B.F. & Diaz Cosin, D.J. (1989) Earthworms of continental Portugal. Relationships with soil factors. Bolletino di zoologia, 56 (4), 327–331. https://doi.org/10.1080/11250008909355659
  57. Zeriri, I., Tadjine, A., Belhaouchet, N., Berrebbah, H., Djebar, M.R. & Baha, M. (2013) Contribution to the identification of Oligochaeta: Lumbricidae in the region of Annaba in eastern Algeria. European Journal of Experimental Biology, 3 (6), 229–232.

How to Cite

Chergui, C.N., Ouahrani, N.S. & Pelosi, C. (2025) Checklist of earthworm species Annelida, Oligochaetain Algeria. Zootaxa, 5686 (2), 277–293. https://doi.org/10.11646/zootaxa.5686.2.7