Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-08-29
Page range: 451-484
Abstract views: 237
PDF downloaded: 11

Punk’s not dead? Punkochyzeria gen. nov. (Acari: Chyzeriidae) from Cretaceous Myanmar amber

Papanin Institute for Biology of Inland Waters; Russian Academy of Sciences; 152742 Borok; Yaroslavl Region; Russia
Papanin Institute for Biology of Inland Waters; Russian Academy of Sciences; 152742 Borok; Yaroslavl Region; Russia; T.I. Vyazemsky Karadag Scientific Station; Nature Reserve of the Russian Academy of Sciences; Branch of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS; 298188 Theodosia; Crimea
Koltzov Institute of Developmental Biology; Russian Academy of Sciences; 119334 Moscow; Russia; Borissiak Paleontological Institute; Russian Academy of Sciences; 117647 Moscow; Russia
Acari trombidiform mites Parasitengona paleoecology amber taxonomy erectile setae

Abstract

We report the discovery of remarkable fossil mites referred to a new genus Punkochyzeria gen. nov. (Trombidiformes: Chyzeriidae) found in mid-Cretaceous Kachin amber from Myanmar. The postlarval stages of these mites possess unusually long tufts of dorsal opisthosomal setae. The mites were initially identified as Parachyzeria Hirst, 1926, but detailed morphological analysis revealed several key characters, including the absence of a paradont or basidonts on the palptibia, suggesting a new genus. We describe three new species, Punkochyzeria minaevi sp. nov., Punkochyzeria makolae sp. nov. and Punkochyzeria khoyi sp. nov., which are distinguished by the form of the dorsal opisthosomal setae, the odontus/palptarsus ratio and the number of setae on the palptibial ctenidium. We also present an identification key to the species of the genus Punkochyzeria and describe four specimens of this genus, which are difficult to attribute to any particular species, because of their poor state of preservation. We discuss the erectile function of the long dorsal setae. Notably, the individuals of P. makolae and P. khoyi carry other mites as syninclusions among the long tufts of setae, although phoretic relationship may be accidental. This discovery extends the known diversity of the family Chyzeriidae to the Cretaceous and provides new insights into their evolutionary history and ecological interactions.

 

References

  1. Alberti, G. & Twose, A.I.M. (2016) Fine structural observations of the erectile setae and dermal glands on the notogaster of Heterochthonius gibbus (Oribatida, Enarthronota, Heterochthoniidae). Soil Organisms, 88 (2), 111–132.
  2. André, M. (1938) Contribution a l’etude des Thrombidiidae de l’Afrique Occidentale (Voyage en A.O.F. de L. Bertrand et J. Millot). Bulletin de la Société zoologique de France, 63, 224–236.
  3. Hirst, S. (1926) Description of new mites, including four new species of “red spider”. Proceedings of the Zoological Society of London, 3, 825–841. https://doi.org/10.1111/j.1469-7998.1926.tb07130.x
  4. Kolesnikov, V.B., Vorontsov, D.D., Norton, R.A. & Klimov, P.B. (2025) First fossil evidence of pediculochelid mites: two new species from Middle Cretaceous and Late Eocene amber revealing morphological stasis over atleast 99 million years. Acarologia, 65 (1), 67–90. https://doi.org/10.24349/uxz4-s4sq
  5. Krantz, G.W. & Lindquist, E.E. (1979) Evolution of phytophagous mites (Acari). Annual Review of Entomology, 24, 121–158. https://doi.org/10.1146/annurev.en.24.010179.001005
  6. Liu, Y., Fan, Q-H & Ren, D. (2025) A Cretaceous mite with ultra-long setae possibly reveals the early survival strategy of Chyzeriidae. Fossil Record, 28 (2), 241–248. https://doi.org/10.3897/fr.28.158587
  7. Mąkol, J. (2007) Generic level review and phylogeny of Trom-bidiidae and Podothrombiidae (Acari: Actinotrichida: Trombidioidea) of the World. Annales Zoologici, 57 (1), 1–194.
  8. Mąkol, J., Kłosińska, A. & Łaydanowicz, J. (2012) Host–parasite interactions within terrestrial Parasitengona (Acari, Trombidiformes, Prostigmata). International Journal of Acarology, 38 (1), 18–22. https://doi.org/10.1080/01647954.2011.583276
  9. Mąkol, J., Moniuszko, H., Świerczewski, D. & Stroiński, A. (2014) Planthopper (Hemiptera: Flatidae) parasitized by larval erythraeid mite (Trombidiformes: Erythraeidae) – a description of two new species from Western Madagascar. Journal of Insect Science, 14 (1), 1–12. https://doi.org/10.1093/jisesa/ieu056
  10. Mąkol, J. & Wohltmann, A. (2012) An annotated checklist of terrestrial Parasitengona (Actinotrichida: Prostigmata) of the World, excluding Trombiculidae and Walchiidae. Annales Zoologici, 62 (3), 359–562. https://doi.org/10.3161/000345412X656671
  11. Mayoral, J.G., Welbourn, W.C. & Barranco, P. (2018) A revision of the Pteridopodinae (Acari: Parasitengonina: Chyzeriidae) with the description of a new genus from South Spain and key to the Pteridopodinae. Systematic and Applied Acarology, 23 (6), 1125–1137. https://doi.org/10.11158/saa.23.6.8
  12. Mayoral, J.G. & Seeman, O.D. (2015) A review of larval Chyzeria Canestrini, 1897 (Acari: Parasitengonina: Chyzeriidae). Systematic Parasitology, 90 (3), 257–268. https://doi.org/10.1007/s11230-015-9547-2
  13. Norton, R.A. & Fuangarworn, M. (2015) Nanohystricidae n. fam., an unusual, plesiomorphic enarthronote mite family endemic to New Zealand (Acari, Oribatida). Zootaxa, 4027 (2), 151–204. https://doi.org/10.11646/zootaxa.4027.2.1
  14. Osakabe, M. & Shimano, S. (2023) The flashy red color of the red velvet mite Balaustium murorum (Prostigmata: Erythraeidae) is caused by high abundance of the keto-carotenoids, astaxanthin and 3-hydroxyechinenone. Experimental and Applied Acarology, 89, 1–14. https://doi.org/10.1007/s10493-022-00766-z
  15. Proctor, H.C. & Garga, N. (2004) Red, distasteful water mites: did fish make them that way? In: Proctor, H.C. (Ed.), Aquatic Mites from Genes to Communities. Springer, Dordrecht, pp. 127–147. https://doi.org/10.1007/978-94-017-0429-8_10
  16. Rasnitsyn, A.P., Bashkuev, A.S., Kopylov, D.S., Lukashevich, E.D., Ponomarenko, A.G., Popov, Yu.A., Rasnitsyn, D.A., Ryzhkova, O.V., Sidorchuk, E.A., Sukatsheva, I.D. & Vorontsov, D.D. (2016) Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretaceous Research, 61, 234–255. https://doi.org/10.1016/j.cretres.2015.12.025
  17. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. & Cardona, A. (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods, 9 (7), 676–682. https://doi.org/10.1038/nmeth.2019
  18. Seeman, O.D. & Walter, D.E. (2023) Phoresy and mites: More than just a free ride. Annual Review of Entomology, 68, 69–88. https://doi.org/10.1146/annurev-ento-120220-013329
  19. Selden, P.A. & Ren, D. (2017) A review of Burmese amber arachnids. Journal of Arachnology, 45, 324–343. https://doi.org/10.1636/JoA-S-17-029
  20. Shi, G., Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Yang, M., Lei, W., Li, Q. & Li, X. (2012) Age constraint on Burmese amber based on Ue–Pb dating of zircons. Cretaceous Research, 37, 155–163. https://doi.org/10.1016/j.cretres.2012.03.014
  21. Sidorchuk, E.A. & Vorontsov, D.D. (2018) Preparation of small-sized 3D amber samples: state of the technique. Palaeoentomology, 1, 80–90. https://doi.org/10.11646/palaeoentomology.1.1.10
  22. Solórzano‑Kraemer, M.M., Peñalver, E., Herbert, M.C., Delclòs, X., Brown, B.V., Aung, N.N. & Peretti, A.M. (2023) Necrophagy by insects in Oculudentavis and other lizard body fossils preserved in Cretaceous amber. Scientific Reports, 13 (1), 2907. https://doi.org/10.1038/s41598-023-29612-x
  23. Southcott, R.V. (1961) Studies on the systematics and biology of the Erythraeoidea (Acarina), with a critical revision of the genera and subfamilies. Australian Journal of Zoology, 9 (3), 367–610. https://doi.org/10.1071/ZO9610367
  24. Southcott, R.V. (1982) Observations on Chyzeria Canestrini and some related genera (Acarina: Trombidioidea) with remarks on classification of the superfamily and description of a pygmophorid mite phoretic on Chyzeria. Records of the South Australian Museum, 18 (14), 285–326.
  25. Thor, S. & Willmann, C. (1947) Acarina. Trombidiidae. In: Schulze, F.E., Kükenthal, W. & Heider, K. (Eds.), Das Tierreich. Bd. 71b. XXIX–XXXVI. Walter de Gruyter, Berlin, pp. 187–541. https://doi.org/10.1515/9783111625423
  26. Vorontsov, D.D., Kolesnikov, V.B., Voronezhskaya, E.E., Perkovsky, E.E., Berto, M.M., Mowery, J., Ochoa, R. & Klimov, P.B. (2023) Beyond the limits of light: an application of super-resolution confocal microscopy (sCLSM) to investigate Eocene amber microfossils. Life, 13 (4), 865. https://doi.org/10.3390/life13040865
  27. Welbourn, W.C. (1991) Phylogenetic studies of the terrestrial Parasitengona. In: Dusbábek, F. & Bukva, V. (Eds.), Modern Acarology. Vol. 2. Academia, Prague and SPB Acad. Publ., The Hague, pp. 163–170.
  28. Wohltmann, A., Gabryś, G. & Mąkol, J. (2007) Acari: Terrestrial Parasitengona inhabiting transient biotopes. In: Gerecke, R. (Ed.), Süßwasserfauna von Mitteleuropa. Vol. 7/2-1 Chelicerata: Araneae/Acari I. Süßwasserfauna von Mitteleuropa. Springer Spektrum, Berlin, Heidelberg, pp. 158–240. https://doi.org/10.1007/978-3-662-55958-1_6
  29. Xing, L. & Qiu, L. (2020) Zircon Ue–Pb age constraints on the mid-Cretaceous Hkamti amber biota in northern Myanmar. Palaeogeography, Palaeoclimatology, Palaeoecology, 558 (1–2), 109960. https://doi.org/10.1016/j.palaeo.2020.109960
  30. Zhang, W.W. (2017) Frozen dimensions of the fossil insects and other invertebrates in amber. Chongqing University Press, Chongqing, 692 pp. [in Chinese]
  31. Zmudzinski, M. (2022) “Tiny dancer in my hand…” 100-million-year-old case of mite flamboyance. Zoosymposia, 22 (1), 224–224. https://doi.org/10.11646/zoosymposia.22.1.130

How to Cite

Kolesnikov, V.B., Turbanov, I.S. & Vorontsov, D.D. (2025) Punk’s not dead? Punkochyzeria gen. nov. (Acari: Chyzeriidae) from Cretaceous Myanmar amber. Zootaxa, 5686 (4), 451–484. https://doi.org/10.11646/zootaxa.5686.4.1